【題目】已知函數(shù).
(1)若在
上恒成立,求實數(shù)
的取值范圍;
(2)若函數(shù),求函數(shù)
的值域.
【答案】(1);(2)見解析.
【解析】
(1)由參變量分離法得出在
上恒成立,構(gòu)造函數(shù)
,考查該函數(shù)在
的單調(diào)性,利用單調(diào)性得出
,于此可得出實數(shù)
的取值范圍;
(2)先得出,換元
,將問題轉(zhuǎn)化為求函數(shù)
在
上的值域問題求解,然后分
、
、
三種情況討論,可得出函數(shù)
在
上的值域,即為函數(shù)
的值域.
(1)當(dāng)時,
,由
得
,即
,
構(gòu)造函數(shù),其中
,則
,
所以,函數(shù)在區(qū)間
上為增函數(shù),則
,
由于不等式在
上恒成立,所以,
,因此,實數(shù)
的取值范圍是
;
(2)由題意可得,令
,則
,其中
.
①當(dāng)時,
,該函數(shù)的值域為
;
②當(dāng)時,由于二次函數(shù)
的圖象開口向下,對稱軸為直線
,
此時,函數(shù)在
上單調(diào)遞減,所以,
,
此時,該函數(shù)的值域為;
③當(dāng)時,由于二次函數(shù)
的圖象開口向上,對稱軸為直線
,
此時,該函數(shù)在上單調(diào)遞減,在
上單調(diào)遞增,
則,此時,該函數(shù)的值域為
.
綜上所述:當(dāng)時,函數(shù)
的值域為
;
當(dāng)時,函數(shù)
的值域為
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點是橢圓
上的任意一點,直線
與橢圓交于
,
兩點,直線
,
的斜率都存在.
(1)若直線過原點,求證:
為定值;
(2)若直線不過原點,且
,試探究
是否為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一種室內(nèi)植物的株高(單位:
)與與一定范圍內(nèi)的溫度
(單位:
)有,現(xiàn)收集了該種植物的
組觀測數(shù)據(jù),得到如圖所示的散點圖:
現(xiàn)根據(jù)散點圖利用或
建立
關(guān)于
的回歸方程,令
,
,得到如下數(shù)據(jù):
且與
的相關(guān)系數(shù)分別為
、
,其中
.
(1)用相關(guān)系數(shù)說明哪種模型建立關(guān)于
的回歸方程更合適;
(2)(i)根據(jù)(1)的結(jié)果及表中數(shù)據(jù),求關(guān)于
的回歸方程;
(ii)已知這種植物的利潤(單位:千元)與
、
的關(guān)系為
,當(dāng)
何值時,利潤的預(yù)報值最大.
附:對于樣本,其回歸直線
的斜率和截距的最小二乘估計公式分別為:
,
,
相關(guān)系數(shù),
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位有車牌尾號為的汽車
和尾號為
的汽車
,兩車分屬于兩個獨立業(yè)務(wù)部分.對一段時間內(nèi)兩輛汽車的用車記錄進行統(tǒng)計,在非限行日,
車日出車頻率
,
車日出車頻率
.該地區(qū)汽車限行規(guī)定如下:
車尾號 |
|
|
|
|
|
限行日 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 |
現(xiàn)將汽車日出車頻率理解為日出車概率,且,
兩車出車相互獨立.
(I)求該單位在星期一恰好出車一臺的概率.
(II)設(shè)表示該單位在星期一與星期二兩天的出車臺數(shù)之和,求
的分布列及其數(shù)學(xué)期望
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,傾斜角為
的直線
的參數(shù)方程為
(
為參數(shù)).以坐標(biāo)原點
為極點,
軸正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(Ⅰ)求直線的普通方程和曲線
的直角坐標(biāo)方程;
(Ⅱ)已知點,若點
的極坐標(biāo)為
,直線
經(jīng)過點
且與曲線
相交于
兩點,設(shè)線段
的中點為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點P是橢圓上的動點,
、
為橢圓的左、右焦點,O為坐標(biāo)原點,若M是
的角平分線上的一點,且F1M⊥MP,則|OM|的取值范圍是( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】高斯函數(shù)是數(shù)學(xué)中的一個重要函數(shù),在自然科學(xué)社會科學(xué)以及工程學(xué)等領(lǐng)域都能看到它的身影.設(shè),用符號
表示不大于
的最大整數(shù),如
,則
叫做高斯函數(shù).給定函數(shù)
,若關(guān)于
的方程
有5個解,則實數(shù)
的取值范圍為( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1 ,正方形的邊長為
分別是
和
的中點,
是正方形的對角線
與
的交點,
是正方形兩對角線的交點,現(xiàn)沿
將
折起到
的位置,使得
,連結(jié)
(如圖2).
(1)求證:;
(2)求三棱錐的高.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com