日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,正方形ABCD中,點E、F分別在AB、CD上,DGEF于點H,交BC于點G,點P在線段BG上.若∠PEF45°,AECG5,PG5,則EP____

          【答案】5

          【解析】

          過點FFMAB于點M,連接PF、PM,則FMADAMDF,由ASA證明MCE≌△CDG,得出MECG5,得出AMDF10,證明EM、P、F四點共圓,得出∠EPF=∠FME90°,證出PEF是等腰直角三角形,得出EPFP,證明BPE≌△CFP,得出BECP10,求出ABAE+BE15,BP5,在RtBPE中,由勾股定理即可得出結(jié)果.

          過點FFMAB于點M,連接PFPM,如圖所示:

          FMAD,AMDF,∠FME=∠MFD90°,

          DGEF

          ∴∠MFE=∠CDG,

          ∵四邊形ABCD是正方形,

          ∴∠B=∠C90°,ABBCDCAD

          FMDC,

          MCECDG中,

          ∴△MCE≌△CDGASA),

          MECG5

          AMDF10,

          CGPG5

          CP10,

          AMCP

          BMBP,

          ∴△BPM是等腰直角三角形,

          ∴∠BMP45°

          ∴∠PMF45°,

          ∵∠PEF45°=∠PMF,

          E、M、P、F四點共圓,

          ∴∠EPF=∠FME90°,

          ∴△PEF是等腰直角三角形,

          EPFP,

          ∵∠BEP+BPE90°,∠BPE+CPF90°,

          ∴∠BEP=∠CPF

          BPECFP中,

          ∴△BPE≌△CFPAAS),

          BECP10,

          ABAE+BE15,

          BP5,

          RtBPE中,由勾股定理得:EP5

          故答案為:5

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點A和點B(0,﹣1),拋物線y=x2+bx+c經(jīng)過點B,與直線l的另一個交點為C(4,n).

          (1)求n的值和拋物線的解析式;

          (2)點D在拋物線上,DEy軸交直線l于點E,點F在直線l上,且四邊形DFEG為矩形(如圖2),設(shè)點D的橫坐標(biāo)為t(0t4),矩形DFEG的周長為p,求p與t的函數(shù)關(guān)系式以及p的最大值;

          (3)將AOB繞平面內(nèi)某點M旋轉(zhuǎn)90°或180°,得到A1O1B1,點A、O、B的對應(yīng)點分別是點A1、O1、B1.若A1O1B1的兩個頂點恰好落在拋物線上,那么我們就稱這樣的點為“落點”,請直接寫出“落點”的個數(shù)和旋轉(zhuǎn)180°時點A1的橫坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知拋物線yax2+bx+c的對稱軸為x=﹣1,且過點(﹣3,0),(0,﹣3).

          1)求拋物線的表達式.

          2)已知點(m,k)和點(nk)在此拋物線上,其中mn,請判斷關(guān)于t的方程t2+mt+n0是否有實數(shù)根,并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】甲、乙兩種商品原來的單價和為100元因市場變化,甲商品降價10%乙商品提價40%,調(diào)價后兩種商品的單價和比原來的單價和提高了20%甲、乙兩種商品原來的單價各是多少?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平行四邊形ABCD中,點E、F分別為邊ABCD的中點,BD是平行四邊形ABCD的對角線,AGBDCB的延長線于點G

          1)求證:四邊形BEDF是平行四邊形;

          2)若AEDE,則四邊形AGBD是什么特殊四邊形?請證明你的結(jié)論.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在△ABC中,點E、F在邊BC上,點D在邊AC上,連接EDDF,m,∠A=∠EDF120°

          1)如圖1,點EB重合,m1

          BD平分∠ABC,求證:CD2CFCB;

          ,則   ;

          2)如圖2,點E、B不重合.若BECF,m,,求m的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系xOy中,直線lyax+b與雙曲線交于點A1,m)和B(﹣2,﹣1).點A關(guān)于x軸的對稱點為點C

          1)①求k的值和點C的坐標(biāo);②求直線l的表達式;

          2)過點By軸的垂線與直線AC交于點D,經(jīng)過點C的直線與直線BD交于點E.若30°≤∠CED45°,直接寫出點E的橫坐標(biāo)t的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在一筆直的海岸線上有A,B兩個觀測站,AB的正東方向有一艘小船停在點P,A測得小船在北偏西60°的方向,從B測得小船在北偏東45°的方向,BP=6km.

          (1)A、B兩觀測站之間的距離;

          (2)小船從點P處沿射線AP的方向前行,求觀測站B與小船的最短距離.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,ABCD的對角線AC、BD交于點O,DE平分∠ADCAB于點E,∠BCD=60°,AD=AB,連接OE.下列結(jié)論:①SABCD=ADBD;②DB平分∠CDE;③AO=DE;④SADE=5SOFE,其中正確的結(jié)論是_____.

          查看答案和解析>>

          同步練習(xí)冊答案