【題目】如圖所示,已知中,
,BD、CE分別平分
和
,BD、CE交于點(diǎn)O.
求證:BE+CD=BC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,邊長(zhǎng)為2的正方形中,
是對(duì)角線
上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)
、
不重合),過點(diǎn)
作
,
交射線
于點(diǎn)
,過點(diǎn)
作
,垂足為點(diǎn)
.
(1)求證::
(2)在點(diǎn)的運(yùn)動(dòng)過程中,
的長(zhǎng)度是否發(fā)生變化?若不變,試求出這個(gè)不變的值,寫出解答過程:若變化,試說明理由:
(3)在點(diǎn)的運(yùn)動(dòng)過程中,
能否為等腰三角形?如果能,直接寫出此時(shí)
的長(zhǎng);如果不能,試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一艘海輪位于燈塔P的北偏東66.1°方向,距離燈塔120海里的A處,它沿正南方向航行一段時(shí)間后,到達(dá)位于燈塔P的南偏東45°方向上的B處,求BP和BA的長(zhǎng)(結(jié)果取整數(shù)).
參考數(shù)據(jù):sin66.1°≈0.91,cos66.1°≈0.41,tan64°≈2.26,取1.414.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,點(diǎn)O是坐標(biāo)原點(diǎn),四邊形ABCO是菱形,點(diǎn)A的坐標(biāo)為(﹣3,4),點(diǎn)C在x軸的正半軸上,直線AC交y軸于點(diǎn)M,AB邊交y軸于點(diǎn)H,連接BM.
(1)菱形ABCO的邊長(zhǎng)
(2)求直線AC的解析式;
(3)動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿折線ABC方向以2個(gè)單位/秒的速度向終點(diǎn)C勻速運(yùn)動(dòng),設(shè)△PMB的面積為S(S≠0),點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒,
①當(dāng)0<t<時(shí),求S與t之間的函數(shù)關(guān)系式;
②在點(diǎn)P運(yùn)動(dòng)過程中,當(dāng)S=3,請(qǐng)直接寫出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖中的折線表示某汽車的耗油量
(單位:
)與速度
(單位:
)之間的函數(shù)關(guān)系(
),已知線段
表示的函數(shù)關(guān)系中,該汽車的速度每增加
,耗油量增加
.
(1) 當(dāng)速度為、
時(shí),該汽車的耗油量分別為_____
、____
;
(2) 速度是多少時(shí),該汽車的耗油量最低?最低是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,
,M是AB中點(diǎn),
,
(1)在AE、EF、FB中是否總有最大的線段?若有,是哪一條?
(2)AE、EF、FB能否構(gòu)成直角三角形?若能,請(qǐng)加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,已知⊙O的半徑為1,PQ是⊙O的直徑,n個(gè)相同的正三角形沿PQ排成一列,所有正三角形都關(guān)于PQ對(duì)稱,其中第一個(gè)△A1B1C1的頂點(diǎn)A1與點(diǎn)P重合,第二個(gè)△A2B2C2的頂點(diǎn)A2是B1C1與PQ的交點(diǎn)……最后一個(gè)△AnBnCn的頂點(diǎn)Bn,Cn在圓上.
(1)如圖②,當(dāng)n=1時(shí),求正三角形的邊長(zhǎng)a1.
(2)如圖③,當(dāng)n=2時(shí),求正三角形的邊長(zhǎng)a2.
(3)如圖①,求正三角形的邊長(zhǎng)an(用含n的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:AB是⊙O的直徑,AC交⊙O于G,E是AG上一點(diǎn),D為△BCE內(nèi)心,BE交AD于F,且∠DBE=∠BAD.
(1)求證:BC是⊙O的切線;
(2)求證:DF=DG;
(3)若∠ADG=45°,DF=1,則有兩個(gè)結(jié)論:①ADBD的值不變;②AD-BD的值不變,其中有且只有一個(gè)結(jié)論正確,請(qǐng)選擇正確的結(jié)論,證明并求其值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,過軸正半軸上的任意一點(diǎn)
,作
軸的平行線,分別與反比例函數(shù)
和
的圖象交于點(diǎn)
和點(diǎn)
,點(diǎn)
是
軸上一點(diǎn),連接
、
,則
的面積為( )
A. 3B. 4C. 5D. 6
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com