日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,矩形ABCD中,點E、F分別從A、D兩點同時出發(fā),以相同的速度作直線運動.點E在線段AB上運動,點F沿射線CD運動,連結EF、AF、AC,EF分別交AD和AC 于點O、H.
          (1)求證:EO=OF;
          (2)當點E運動到什么位置時,EF=AC,在備用圖1中畫出圖形并說明理由;
          (3)當點E運動到什么位置時,∠FAD=∠CAD,在備用圖2中畫出圖形并說明理由,此時設四邊形CDOH的面積為S,四邊形ABCF的面積為S,請直接寫出S:S的值.
          (1)證明見解析;
          (2)點E在AB的中點.理由見解析;
          (3)點E與點B重合,S1:S2=

          試題分析:(1)由矩形的性質就可以得出∠EAD=∠FDA=90°,根據(jù)AE=DF就可以得出△AOE≌△DOF就可以得出結論;
          (2)作EG⊥CD于G,由矩形的性質就可以得出△EGF≌△ADC就可以得出結論;
          (3)如圖3,由∠FAD=∠CAD就可以得出△ADF≌△ADC就可以得出DF=DC,得出AF=CD=AB而得出結論.
          試題解析:(1)證明:如圖1,∵四邊形ABCD是矩形,
          ∴AD=BC,AB=DC,∠DAB=∠ADC=∠B=∠BCD=90°.
          在△AOE和△DOF中,

          ∴△AOE≌△DOF(AAS),
          ∴EO=OF;
          (2)點E在AB的中點.
          理由:如圖2,作EG⊥CD于G,
          ∴∠EGF=90°,
          ∴四邊形AEGD是矩形,
          ∴EG=AD.AE=DG.
          ∴FD=DG,
          ∴DG=FG,
          在Rt△ADC和Rt△EGF中,

          ∴Rt△ADC≌Rt△EGF(HL),
          ∴FG=DC,
          ∴DG=DC,
          ∴AE=AB,
          ∴點E是AB的中點;
          (3)點E與點B重合
          理由:在△ADF和△ADC中

          ∴△ADF≌△ADC(ASA),
          ∴FD=CD,
          ∴AE=CD,
          ∴AE=AB,
          ∴點E與點B重合.
          ∵四邊形ABCD是矩形
          ∴AD∥BC,AB∥CD,
          ∴△AOH∽△CBH,△AHB∽△
          ,
          ∴SAOH:SCBH=1:4,SOH:SABH=1:2.
          設SAOH=a,則SABH=2a,SCBH=4a,
          ∴SABC=6a,SADC=6a,
          ∴S四邊形ABCF=18a,S四邊形CDOH=5a,
          ∴S四邊形CDOH:S四邊形ABCF=,
          即S1:S2=
          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源:不詳 題型:解答題

          如圖,在三角形紙片ABC中,AD平分∠BAC,將△ABC折疊,使點A與點D重合,展開后折痕分別交AB、AC于點E、F,連接DE、DF.求證:四邊形AEDF是菱形.

          查看答案和解析>>

          科目:初中數(shù)學 來源:不詳 題型:解答題

          四邊形ABCD是正方形,△BEF是等腰直角三角形,∠BEF=90°,BE=EF,連接DF,G為DF的中點,連接EG,CG,EC.
          (1)如圖1,若點E在CB邊的延長線上,直接寫出EG與GC的位置關系及的值;
          (2)將圖1中的△BEF繞點B順時針旋轉至圖2所示位置,請問(1)中所得的結論是否仍然成立?若成立,請寫出證明過程;若不成立,請說明理由;
          (3)將圖1中的△BEF繞點B順時針旋轉α(0°<α<90°),若BE=1,,當E,F(xiàn),D三點共線時,求DF的長及tan∠ABF的值.

          查看答案和解析>>

          科目:初中數(shù)學 來源:不詳 題型:解答題

          如圖,在△ABC中,點O是AC邊上(端點除外)的一個動點,過點O作直線MN∥BC.設MN交∠BCA的平分線于點E,交∠BCA的外角平分線于點F,連接AE、AF。
          (1)那么當點O運動到何處時,四邊形AECF是矩形?并說明理由。
          (2)在(1)的前提下△ABC滿足什么條件,四邊形AECF是正方形?(直接寫出答案,無需證明)。

          查看答案和解析>>

          科目:初中數(shù)學 來源:不詳 題型:解答題

          如圖,已知矩形OABC的A點在x軸上,C點在y軸上,,
          (1)在BC邊上求作一點E,使OE=OA;(保留作圖痕跡,不寫畫法)
          (2)求出點E的坐標.

          查看答案和解析>>

          科目:初中數(shù)學 來源:不詳 題型:解答題

          對于半徑為r的⊙P及一個正方形給出如下定義:若⊙P上存在到此正方形四條邊距離都相等的點,則稱⊙P是該正方形的“等距圓”.如圖1,在平面直角坐標系xOy中,正方形ABCD的頂點A的坐標為(2,4),頂點C、D在x軸上,且點C在點D的左側.
          (1)當r=時,
          ①在P1(0,-3),P2(4,6),P3,2)中可以成為正方形ABCD的“等距圓”的圓心的是_______________;
          ②若點P在直線上,且⊙P是正方形ABCD的“等距圓”,則點P的坐標為_______________;
          (2)如圖2,在正方形ABCD所在平面直角坐標系xOy中,正方形EFGH的頂點F的坐標為(6,2),頂點E、H在y軸上,且點H在點E的上方.
          ①若⊙P同時為上述兩個正方形的“等距圓”,且與BC所在直線相切,求⊙P 在y軸上截得的弦長;
          ②將正方形ABCD繞著點D旋轉一周,在旋轉的過程中,線段HF上沒有一個點能成為它的“等距圓”的圓心,則r的取值范圍是_______________.

          查看答案和解析>>

          科目:初中數(shù)學 來源:不詳 題型:單選題

          下列說法中的錯誤的是(    ).
          A.一組鄰邊相等的矩形是正方形
          B.一組鄰邊相等的平行四邊形是菱形
          C.一組對邊相等且有一個角是直角的四邊形是矩形
          D.一組對邊平行且相等的四邊形是平行四邊形

          查看答案和解析>>

          科目:初中數(shù)學 來源:不詳 題型:填空題

          如圖,在等腰梯形ABCD中,AB∥CD,AC⊥BC,∠B=60°,BC=8,則等腰梯形ABCD的周長為         

          查看答案和解析>>

          科目:初中數(shù)學 來源:不詳 題型:填空題

          如圖,正方形ABCD中,扇形BAC與扇形CBD的弧交于點E, AB=2cm.則圖中陰影部分面積為     

          查看答案和解析>>

          同步練習冊答案