日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】問題:將邊長為的正三角形的三條邊分別等分,連接各邊對應(yīng)的等分點(diǎn),則該三角形中邊長為1的正三角形和邊長為2的正三角形分別有多少個(gè)?

          探究:要研究上面的問題,我們不妨先從最簡單的情形入手,進(jìn)而找到一般性規(guī)律.

          探究一:將邊長為2的正三角形的三條邊分別二等分,連接各邊中點(diǎn),則該三角形中邊長為1的正三角形和邊長為2的正三角形分別有多少個(gè)?

          如圖①,連接邊長為2的正三角形三條邊的中點(diǎn),從上往下看:

          邊長為1的正三角形,第一層有1個(gè),第二層有3個(gè),共有個(gè);

          邊長為2的正三角形一共有1個(gè).

          探究二:將邊長為3的正三角形的三條邊分別三等分,連接各邊對應(yīng)的等分點(diǎn),則該三角形中邊長為1的正三角形和邊長為2的正三角形分別有多少個(gè)?

          如圖②,連接邊長為3的正三角形三條邊的對應(yīng)三等分點(diǎn),從上往下看:邊長為1的正三角形,第一層有1個(gè),第二層有3個(gè),第三層有5個(gè),共有個(gè);邊長為2的正三角形共有個(gè).

          探究三:將邊長為4的正三角形的三條邊分別四等分(圖③),連接各邊對應(yīng)的等分點(diǎn),則該三角形中邊長為1的正三角形和邊長為2的正三角形分別有多少個(gè)?

          (仿照上述方法,寫出探究過程)

          結(jié)論:將邊長為的正三角形的三條邊分別等分,連接各邊對應(yīng)的等分點(diǎn),則該三角形中邊長為1的正三角形和邊長為2的正三角形分別有多少個(gè)?

          (仿照上述方法,寫出探究過程)

          應(yīng)用:將一個(gè)邊長為25的正三角形的三條邊分別25等分,連接各邊對應(yīng)的等分點(diǎn),則該三角形中邊長為1的正三角形有______個(gè)和邊長為2的正三角形有______個(gè).

          【答案】探究三:16,6;結(jié)論:n, ;應(yīng)用:625,300.

          【解析】

          探究三:模仿探究一、二即可解決問題;

          結(jié)論:由探究一、二、三可得:將邊長為的正三角形的三條邊分別等分,連接各邊對應(yīng)的等分點(diǎn),邊長為1的正三角形共有個(gè);邊長為2的正三角形共有 個(gè);

          應(yīng)用:根據(jù)結(jié)論即可解決問題.

          解:探究三:

          如圖3,連接邊長為4的正三角形三條邊的對應(yīng)四等分點(diǎn),從上往下看:邊長為1的正三角形,第一層有1個(gè),第二層有3個(gè),第三層有5個(gè),第四層有7個(gè),共有個(gè);

          邊長為2的正三角形有個(gè).

          結(jié)論:

          連接邊長為的正三角形三條邊的對應(yīng)等分點(diǎn),從上往下看:邊長為1的正三角形,第一層有1個(gè),第二層有3個(gè),第三層有5個(gè),第四層有7個(gè),……,第層有個(gè),共有個(gè);

          邊長為2的正三角形,共有個(gè).

          應(yīng)用:

          邊長為1的正三角形有=625(個(gè)),

          邊長為2的正三角形有 (個(gè)).

          故答案為:探究三:16,6;結(jié)論:n, ;應(yīng)用:625,300.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平行四邊形ABCD中,對角線相交于點(diǎn)O,AC=AB, EAB邊的中點(diǎn),G、F BC上的點(diǎn),連接OGEF,若AB=13, BC=10,GF=5,則圖中陰影部分的面積為( )

          A.48B.36C.30D.24

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),將三角形進(jìn)行平移,平移后點(diǎn)的對應(yīng)點(diǎn)分別是點(diǎn),點(diǎn),點(diǎn),點(diǎn),點(diǎn).

          1)若,求的值;

          2)若點(diǎn),其中. 直線軸于點(diǎn),且三角形的面積為1,試探究的數(shù)量關(guān)系,并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,菱形的頂點(diǎn)軸上,點(diǎn)在點(diǎn)的左側(cè),點(diǎn)軸的正半軸上.點(diǎn)的坐標(biāo)為.動(dòng)點(diǎn)從點(diǎn)出發(fā),以每秒1個(gè)單位長度的速度,按照的順序在菱形的邊上勻速運(yùn)動(dòng)一周,設(shè)運(yùn)動(dòng)時(shí)間為.

          (1)①點(diǎn)的坐標(biāo) .②求菱形的面積.

          (2)當(dāng)時(shí),問線段上是否存在點(diǎn),使得最小,如果存在,求出 最小值;如果不存在,請說明理由.

          (3)若點(diǎn)的距離是1,則點(diǎn)運(yùn)動(dòng)的時(shí)間等于 .

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,雙曲線y與一次函數(shù)y=﹣x+4在第一象限內(nèi)交于AB兩點(diǎn),且AOB的面積為2,則k的值為(

          A.2B.C.D.4

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知:如圖,ABBD,CDBD,垂足分別為B、D,AD和BC相交于點(diǎn)E,EFBD,垂足為F,我們可以證明成立(不要求考生證明).

          若將圖中的垂線改為斜交,如圖,ABCD,AD,BC相交于點(diǎn)E,過點(diǎn)E作EFAB交BD于點(diǎn)F,則:

          1還成立嗎?如果成立,請給出證明;如果不成立,請說明理由;

          (2)請找出SABD,SBED和SBDC間的關(guān)系式,并給出證明.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知∠1=∠2,要說明ABDACD,還需從下列條件中選一個(gè),錯(cuò)誤的選法是(

          A. ADB=∠ADCB. B=∠CC. DBDCD. ABAC

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】“格子乘法”是15世紀(jì)中葉,意大利數(shù)學(xué)家帕喬利在《算術(shù)幾何及比例性質(zhì)摘要》一書中介紹的一種兩個(gè)數(shù)的相乘的計(jì)算方法.這種方法傳入中國之后,在明朝數(shù)學(xué)家程大位的《算法統(tǒng)宗》書中被稱為“鋪地錦”具體步驟如下:

          ①先畫一個(gè)矩形,把它分成p×q個(gè)方格(pq分別為兩乘數(shù)的位數(shù))在方格上邊、右邊分別寫下兩個(gè)因數(shù);

          ②再用對角線把方格一分為二,分別記錄上述各位數(shù)字相應(yīng)乘積的十位數(shù)與個(gè)位數(shù);

          ③然后這些乘積由右下到左上,沿對角線方向相加,相加滿十時(shí)向前進(jìn)一;

          ④最后得到結(jié)果(方格左側(cè)與下方數(shù)字依次排列).比如:

          1)圖1是用“鋪地錦”計(jì)算x9×784的格子,則z   ,x9×784   

          2)圖2是用“鋪地錦”計(jì)算ab×cd的格子,已知ab×cd2176,求mn的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,將△ABO繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到的位置,點(diǎn)BO分別落在點(diǎn)、處,點(diǎn)x軸上,再將繞點(diǎn)順時(shí)針旋轉(zhuǎn)到的位置,點(diǎn)x軸上,將繞點(diǎn)順時(shí)針旋轉(zhuǎn)到的位置,點(diǎn)x軸上,依次進(jìn)行下去…若點(diǎn), ,則點(diǎn)的坐標(biāo)為________

          查看答案和解析>>

          同步練習(xí)冊答案