日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,中,,以為坐標(biāo)原點(diǎn)建立直角堅(jiān)標(biāo)系,使點(diǎn)軸正半軸上,,,點(diǎn)邊的中點(diǎn),拋物線的頂點(diǎn)是原點(diǎn),且經(jīng)過點(diǎn)

          (1)填空:直線的解析式為 ;拋物線的解析式為

          (2)現(xiàn)將該拋物線沿著線段移動(dòng),使其頂點(diǎn)始終在線段(包括點(diǎn),),拋物線與軸的交點(diǎn)為,與邊的交點(diǎn)為

          ①設(shè)的面積為,求的取值范圍;

          ②是否存在這樣的點(diǎn),使四邊形為平行四邊形?如存在,求出此時(shí)拋物線的解析式;如不存在,說明理由.

          【答案】1y=2x,y=x2 ;(2)①,②存在,

          【解析】

          1)本題須先求出點(diǎn)C的坐標(biāo)然后即可求出直線OC的解析式和拋物線的解析式;
          2)①根據(jù)拋物線的移動(dòng)規(guī)律設(shè)出拋物線的解析式,求出△BOE的面積Sm的關(guān)系,再根據(jù)m的取值范圍即可求出S的取值范圍;

          ②根據(jù)平行四邊形的性質(zhì)即可得出m的值.

          解:(1)∵OA=2AB=8,點(diǎn)CAB邊的中點(diǎn),
          ∴點(diǎn)C的坐標(biāo)為(2,4)點(diǎn),
          設(shè)直線的解析式為y=kx
          4=2k,解得k=2
          ∴直線的解析式為y=2x,
          設(shè)拋物線的解析式為y=kx2
          4=4k,解得k=1
          ∴拋物線的解析式為y=x2;

          2)設(shè)移動(dòng)后拋物線的解析式為y=x-m2+2m,

          ,

          ,

          又∵,

          ;

          ②存在點(diǎn)D,使四邊形BDOC為平行四邊形,

          當(dāng)OD=BC,四邊形BDOC為平行四邊形,

          OD=BC==4

          則可得x=0時(shí)y=4,

          m2+2m=4,

          ∴(m+12=5,

          解得(舍去),

          所以,

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某校心靈信箱的設(shè)立,為師、生之間的溝通開設(shè)了一個(gè)書面交流的渠道.為了解九年級(jí)學(xué)生對(duì)心靈信箱開通兩年來的使用情況,某課題組對(duì)該校九年級(jí)全體學(xué)生進(jìn)行了一次問卷調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如下尚不完整的統(tǒng)計(jì)圖.

          兩年來,你通過心靈信箱給老師總共投遞過幾封信?

          A.沒投過 B.一封 C.兩封 D.三封或以上

          根據(jù)以上圖表,解答下列問題:

          (1)該校九年級(jí)學(xué)生共有____人;

          (2)學(xué)生調(diào)查結(jié)果扇形統(tǒng)計(jì)圖中,扇形的圓心角度數(shù)是______

          (3)請(qǐng)你補(bǔ)全條形統(tǒng)計(jì)圖;

          (4)根據(jù)調(diào)查結(jié)果可以推斷:兩年來,該校九年級(jí)學(xué)生通過心靈信箱投遞出信件總數(shù)至少有_____.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,ABC中,BC=AC,ACB=90°,將ABC繞著點(diǎn)C順時(shí)針旋轉(zhuǎn)α0≤α≤90°),得到EFC,EFABAC相交于點(diǎn)D、H,FCAB相交于點(diǎn)GAC相交于點(diǎn)D、HFCAB相較于點(diǎn)G

          1)求證:GBC≌△HEC;

          2)在旋轉(zhuǎn)過程中,當(dāng)α是多少度時(shí)四邊形BCED可以是某種特殊的平行四邊形?并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,將一塊等腰直角三角板放在第二象限,斜靠在兩坐標(biāo)軸上,點(diǎn)坐標(biāo)為,點(diǎn)的坐標(biāo)為,一次函數(shù)的圖象經(jīng)過點(diǎn)B、C,反比例函數(shù)的圖象也經(jīng)過點(diǎn)

          (1)求反比例函數(shù)和一次函數(shù)的關(guān)系式;

          (2)觀察圖象直接寫出圖象在第二象限時(shí),的解集.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(3,3)、B(﹣1,0)、C(4,0).

          (1)經(jīng)過平移,可使△ABC的頂點(diǎn)A與坐標(biāo)原點(diǎn)O重合,則點(diǎn)C的對(duì)應(yīng)點(diǎn)C1的坐標(biāo)為   ;(不用畫圖)

          (2)在圖中畫出將△ABC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°得到的△ABC′;

          (3)以點(diǎn)A為位似中心放大△ABC,得到△AB2C2,使SABCS=1:4,在圖中畫出△AB2C2

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖是小莉在一次放風(fēng)箏活動(dòng)中某時(shí)段的示意圖,她在A處時(shí)的風(fēng)箏線(整個(gè)過程中風(fēng)箏線近似地看作直線)與水平線構(gòu)成37°角,線段AA1表示小紅身高1.5米.當(dāng)她從點(diǎn)A跑動(dòng)4米到達(dá)點(diǎn)B處時(shí),風(fēng)箏線與水平線構(gòu)成60°角,此時(shí)風(fēng)箏到達(dá)點(diǎn)E處,風(fēng)箏的水平移動(dòng)距離CF8米,這一過程中風(fēng)箏線的長度保持不變,求風(fēng)箏原來的高度C1D

          (參考數(shù)據(jù):sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在菱形ABCD中,AB2,∠D120°,將菱形翻折,使點(diǎn)A落在邊CD的中點(diǎn)E處,折痕交邊ADAB于點(diǎn)G,F,則AF的長為___

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】閱讀下面的材料:

          如果函數(shù)滿足:對(duì)于自變量的取值范圍內(nèi)的任意,

          1)若,都有,則稱是增函數(shù);

          2)若,都有,則稱是減函數(shù).

          例題:證明函數(shù)是減函數(shù).

          證明:設(shè),

          ,∴,.∴.即

          .∴函數(shù))是減函數(shù).

          根據(jù)以上材料,解答下面的問題:

          己知函數(shù)),

          1)計(jì)算:_______,_______

          (2)猜想:函數(shù))是_______函數(shù)(填“增”或“減”);

          3)請(qǐng)仿照例題證明你的猜想.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】拋物線yx2+bx+c的圖象經(jīng)過點(diǎn)A(1,0)B(0,﹣3)

          1)求這個(gè)拋物線的解析式;

          2)拋物線與x軸的另一交點(diǎn)為C,拋物線的頂點(diǎn)為D,判斷CBD的形狀;

          3)直線BNx軸,交拋物線于另一點(diǎn)N,點(diǎn)P是直線BN下方的拋物線上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)B和點(diǎn)N重合),過點(diǎn)Px軸的垂線,交直線BC于點(diǎn)Q,當(dāng)四邊形BPNQ的面積最大時(shí),求出點(diǎn)P的坐標(biāo).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案