日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】 如圖,在△ABC中,DE是邊AB的垂直平分線,分別交邊AB,AC于點(diǎn)DE,連接BE,點(diǎn)F在邊AC上,ABAF,連接BF

          (1)求證:∠BEC2A

          (2)當(dāng)∠BFC108°時(shí),求∠A的度數(shù).

          【答案】(1)證明見解析;(2)

          【解析】

          (1)根據(jù)線段垂直平分線的性質(zhì)和等腰三角形的性質(zhì),可以得到∠EBA=∠A,然后根據(jù)三角形外角的性質(zhì),即可證明結(jié)論成立;

          (2)根據(jù)∠BFC108°,可以得到∠BFA的度數(shù),然后根據(jù)ABAF和三角形內(nèi)角和定理,即可得到∠A的度數(shù).

          (1)證明:∵DE是邊AB的垂直平分線,

          EBEA,

          ∴∠EBA=∠A,

          ∴∠BEC=∠EBA+A2A,

          即∠BEC2A;

          (2)∵∠BFC108°,

          ∴∠BFA72°,

          ABAF

          ∴∠ABF=∠AFB72°,

          ∴∠A180°﹣∠ABF﹣∠AFB36°,

          即∠A的度數(shù)為36°.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系xOy中,已知拋物線的頂點(diǎn)為A(2,),拋線物與y軸交于點(diǎn)B(0,),點(diǎn)C在其對(duì)稱軸上且位于點(diǎn)A下方,將線段AC繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)90°,點(diǎn)A落在拋物線上的點(diǎn)P處.

          (1)求拋物線的解析式;

          (2)求線段AC的長(zhǎng);

          (3)將拋物線平移,使其頂點(diǎn)A移到原點(diǎn)O的位置,這時(shí)點(diǎn)P落在點(diǎn)D的位置,如果點(diǎn)My軸上,且以O,C,D,M為頂點(diǎn)的四邊形的面積為8,求點(diǎn)M的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,AB直徑,BC于點(diǎn)F,且交于點(diǎn)E,且∠AEC=ODB.

          1)判斷直線的位置關(guān)系,并給出證明;

          2)當(dāng),時(shí),求的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,拋物線y=ax2+bx +3x軸的交點(diǎn)為AB,其中點(diǎn)A(-10),且點(diǎn)D(2,3)在該拋物線上.

          1)求該拋物線所對(duì)應(yīng)的函數(shù)解析式;

          2)點(diǎn)P是線段AB上的動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)A,B重合),過點(diǎn)PPQx軸交該拋物線于點(diǎn)Q,連接AQ,DQ,記點(diǎn)P的橫坐標(biāo)為t

          時(shí),求面積的最大值;

          是以Q為直角頂點(diǎn)的直角三角形時(shí),求所有滿足條件的點(diǎn)Q的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某花店用3600元按批發(fā)價(jià)購(gòu)買了一批花卉.若將批發(fā)價(jià)降低10%,則可以多購(gòu)買該花卉20.市場(chǎng)調(diào)查反映,該花卉每盆售價(jià)25元時(shí),每天可賣出25.若調(diào)整價(jià)格,每盆花卉每漲價(jià)1元,每天要少賣出1.

          1)該花卉每盆批發(fā)價(jià)是多少元?

          2)若每天所得的銷售利潤(rùn)為200元時(shí),且銷量盡可能大,該花卉每盆售價(jià)是多少元?

          3)為了讓利給顧客,該花店決定每盆花卉漲價(jià)不超過5元,問該花卉一天最大的銷售利潤(rùn)是多少元?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】 如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(6,),ABx軸于點(diǎn)B,ACy軸于點(diǎn)C,連接BC.點(diǎn)D是線段AC的中點(diǎn),點(diǎn)E的坐標(biāo)為(0),點(diǎn)F是線段EO上的一個(gè)動(dòng)點(diǎn).過點(diǎn)AD,F的拋物線與x軸正半軸交于點(diǎn)G,連接DG交線段AB于點(diǎn)M

          (1)求∠ACB的度數(shù);

          (2)當(dāng)點(diǎn)F運(yùn)動(dòng)到原點(diǎn)時(shí),求過AD,F三點(diǎn)的拋物線的函數(shù)表達(dá)式及點(diǎn)G的坐標(biāo);

          (3)以線段DM為一邊作等邊三角形DMP,點(diǎn)P與點(diǎn)A在直線DG同側(cè),當(dāng)點(diǎn)F從點(diǎn)E運(yùn)動(dòng)到點(diǎn)O時(shí),請(qǐng)直接寫出點(diǎn)P運(yùn)動(dòng)的路徑的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,用一段長(zhǎng)為30m的籬笆圍成一個(gè)一邊靠墻的矩形菜園(矩形ABCD),墻長(zhǎng)為22m,這個(gè)矩形的長(zhǎng)ABxm,菜園的面積為Sm2,且ABAD

          1)求Sx之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.

          2)若要圍建的菜園為100m2時(shí),求該萊園的長(zhǎng).

          3)當(dāng)該菜園的長(zhǎng)為多少m時(shí),菜園的面積最大?最大面積是多少m2?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】1)問題發(fā)現(xiàn):如圖1,已知點(diǎn)為線段上一點(diǎn),分別以線段為直角邊作兩個(gè)等腰直角三角形,,連接,線段之間的數(shù)量關(guān)系為__;位置關(guān)系為_________

          2)拓展研究:如圖2,把繞點(diǎn)C逆時(shí)針旋轉(zhuǎn),線段交于點(diǎn)F,則之間的關(guān)系是否仍然成立,說明理由;

          3)解決問題:如圖3,已知,連接,把線段AB繞點(diǎn)A旋轉(zhuǎn),若,請(qǐng)直接寫出線段的取值范圍.


          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知一次函數(shù)y1axba≠0)與反比例函數(shù)y2k0),兩函數(shù)圖象交于(4,1),(2,n)兩點(diǎn).

          1)求a,k的值;

          2)若y2y10,求x的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案