日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知拋物線拋物線(n為正整數(shù),且0<a1<a2<…<an)與x軸的交點為An-1(bn-1,0)和An(bn,0),當n=1時,第1條拋物線與x軸的交點為A0(0,0)和A1(b1,0),其他依此類推.

          (1)求a1,b1的值及拋物線y2的解析式;

          (2)拋物線y3的頂點坐標為(                );

          依此類推第n條拋物線yn的頂點坐標為(                );

          所有拋物線的頂點坐標滿足的函數(shù)關系是        ;

          (3)探究下列結論:

          ①若用An-1An表示第n條拋物線被x軸截得得線段長,直接寫出A0A1的值,并求出An-1An;

          ②是否存在經(jīng)過點A(2,0)的直線和所有拋物線都相交,且被每一條拋物線截得得線段的長度都相等?若存在,直接寫出直線的表達式;若不存在,請說明理由.

           

          【答案】

          解:(1)∵與x軸交于點A0(0,0),∴―a12+ a1=0,∴a1=0或1。

          由已知可知a1>0,∴a1=1。

          令y1=0代入得:=0,∴x1=0,x2=2。

          ∴y1與x軸交于A0(0,0),A1(2,0)。∴b1=2。

          又∵拋物線與x軸交于點A1(2,0),

          ∴―(2―a2)2+ a2=0,∴a2=1或4,∵a2> a1,∴a2=1(舍去)。

          ∴取a2=4,拋物線。

          (2)(9,9); (n2,n2);y=x。

          (3)①∵A0(0,0),A1(2,0),∴A0 A1=2。

          又∵,

          令yn=0,得,解得:x1=n2+n,x2=n2-n。

          ∴A n1(n2-n,0),A n(n2+n,0),即A n1 A n=( n2+n)-( n2-n)=2 n。

          ②存在。是平行于直線y=x且過A1(2,0)的直線,其表達式為y=x-2。

          【解析】

          試題分析:(1)將A0坐標代入y1的解析式可求得a1的值;a1的值知道了y1的解析式也就確定了,已知拋物線就可求出b1的值,又把(b1,0)代入y2,可求出a2 ,即得y2的解析式。

          (2)用同樣的方法可求得a3 、a4 、a5 ……由此得到規(guī)律

          ∵拋物線令y2=0代入得:,∴x1=2,x2=6。

          ∴y2與x軸交于點A1(2,0),A2(6,0)。

          又∵拋物線與x軸交于A2(6,0),∴―(6―a3)2+a3=0!郺3=4或9。

          ∵a3> a3,∴a3=4(舍去),即a3=9!鄴佄锞y3的頂點坐標為(9,9)。

          由拋物線y1的頂點坐標為(1,1),y2的頂點坐標為(4,4),y3的頂點坐標為(9,9),依次類推拋物線yn的頂點坐標為(n2,n2)。

          ∵所有拋物線的頂點的橫坐標等于縱坐標,

          ∴頂點坐標滿足的函數(shù)關系式是:y= x。

          (3)①由(2)可知A0A1=2,A1A2=4,A2A3=6,得A n1 A n=2 n。

          ②猜測這是與直線y=x平行且過A(2,0)的一條直線,即y=x-2。

          可用特殊值法驗證:取,得所截得的線段長度為,換一組拋物線試試,求出的值也為。

           

          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          精英家教網(wǎng)已知拋物線y=-x2+mx-n的對稱軸為x=-2,且與x軸只有一個交點.
          (1)求m,n的值;
          (2)把拋物線沿x軸翻折,再向右平移2個單位,向下平移1個單位,得到新的拋物線C,求新拋物線C的解析式;
          (3)已知P是y軸上的一個動點,定點B的坐標為(0,1),問:在拋物線C上是否存在點D,使△BPD為等邊三角形?若存在,請求出點D的坐標;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖,已知直線y=-
          1
          2
          x+1
          分別交y軸、x軸于A,B兩點,以線段AB為邊向上作正方形ABCD過點A,D,C的拋物線y=ax2+bx+1與直線的另一交點為點E
          (1)點C的坐標為
           
          ;點D的坐標為
           
          .并求出拋物線的解析式;
          (2)若正方形以每秒
          5
          個單位長度的速度沿射線AB下滑,直至頂點D落在x軸上時停止.設正方形落在x軸下方部分的面積為S,求S關于滑行時間t的函數(shù)關系式,并寫出相應自變量t的取值范圍;
          (3)在(2)的條件下,拋物線與正方形一起平移,同時停止,求拋物線上C,E兩點間的拋物線弧所掃過的面積.
          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          已知拋物線y=ax2+bx+c過點C(0,3),頂點P(2,-1),直線x=m(m>3)交x軸于點D,拋物線交x軸于A、B兩點(如圖10).
          (1)①求得拋物線的函數(shù)解析式為
          y=x2-4x+3
          y=x2-4x+3
          ;
          ②A、B兩點的坐標是A(
          (1,0)
          (1,0)
          ),B(
          (3,0)
          (3,0)
          );
          ③該拋物線關于原點成中心對稱的拋物線的函數(shù)解析式是
          y=-x2-4x-3
          y=-x2-4x-3
          ;
          ④將已知拋物線平移,使頂點落在原點,則平移后得到的新拋物線的函數(shù)解析式是
          y=x2
          y=x2

          (2)若直線x=m(m>3)上有一點E(E在第一象限),使得以B、E、D為頂點的三角形和以A、C、O為頂點的三角形相似,求E點的坐標(用m的代數(shù)式表示)
          (3)在(2)成立的條件下,拋物線上是否存在一點F,使得四邊形ABEF為平行四邊形,若存在,求出m的值及平行四邊形ABEF的面積;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          (2011•自貢)已知拋物線y=ax2+2x+3(a≠0)有如下兩個特點:①無論實數(shù)a怎樣變化,其頂點都在某一條直線l上;②若把頂點的橫坐標減少
          1
          a
          ,縱坐標增大
          1
          a
          分別作為點A的橫、縱坐標;把頂點的橫坐標增加
          1
          a
          ,縱坐標增加
          1
          a
          分別作為點B的橫、縱坐標,則A,B兩點也在拋物線y=ax2+2x+3(a≠0)上.
          (1)求出當實數(shù)a變化時,拋物線y=ax2+2x+3(a≠0)的頂點所在直線l的解析式;
          (2)請找出在直線l上但不是該拋物線頂點的所有點,并說明理由;
          (3)你能根據(jù)特點②的啟示,對一般二次函數(shù)y=ax2+bx+c(a≠0)提出一個猜想嗎?請用數(shù)學語言把你的猜想表達出來,并給予證明.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          已知拋物線l:y=ax2+bx+c(其中a、b、c都不等于0),它的頂點P的坐標是(-
          b
          2a
          ,
          4ac-b2
          4a
          ),與y軸的交點是M(0,c).我們稱以M為頂點,對稱軸是y軸且過點P的拋物線為拋物線l的伴隨拋物線,直線PM為l的伴隨直線.
          (1)請直接寫出拋物線y=2x2-4x+1的伴隨拋物線和伴隨直線的解析式:伴隨拋物線的解析式
          y=-2x2+1
          y=-2x2+1
          ,伴隨直線的解析式
          y=-2x+1
          y=-2x+1

          (2)若一條拋物線的伴隨拋物線和伴隨直線分別是y=-x2-3和y=-x-3,則這條拋物線的解析式是
          y=x2-2x-3
          y=x2-2x-3
          ;
          (3)求拋物線l:y=ax2+bx+c(其中a、b、c都不等于0)的伴隨拋物線和伴隨直線的解析式.

          查看答案和解析>>

          同步練習冊答案