日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】(1)觀察猜想:

          RtABC中,∠BAC=90°,AB=AC,點D在邊BC上,連接AD,把ABD繞點A逆時針旋轉(zhuǎn)90°,點D落在點E處,如圖①所示,則線段CE和線段BD的數(shù)量關系是   ,位置關系是   

          (2)探究證明:

          在(1)的條件下,若點D在線段BC的延長線上,請判斷(1)中結論是還成立嗎?請在圖②中畫出圖形,并證明你的判斷.

          (3)拓展延伸:

          如圖③,∠BAC≠90°,若AB≠AC,∠ACB=45°AC=,其他條件不變,過點DDFADCE于點F,請直接寫出線段CF長度的最大值.

          【答案】(1)CE=BD,CE⊥BD.(2)(1)中的結論仍然成立.理由見解析;(3).

          【解析】分析:(1)線段AD繞點A逆時針旋轉(zhuǎn)90°得到AE,根據(jù)旋轉(zhuǎn)的性質(zhì)得到AD=AE,BAD=CAE,得到BAD≌△CAE,CE=BD,ACE=B,得到∠BCE=BCA+ACE=90°,于是有CE=BD,CEBD.

          (2)證明的方法與(1)類似.

          (3)過AAMBCM,ENAMN,根據(jù)旋轉(zhuǎn)的性質(zhì)得到∠DAE=90°,AD=AE,利用等角的余角相等得到∠NAE=ADM,易證得RtAMDRtENA,則NE=MA,由于∠ACB=45°,則AM=MC,所以MC=NE,易得四邊形MCEN為矩形,得到∠DCF=90°,由此得到RtAMDRtDCF,得,設DC=x,MD=1-x,利用相似比可得到CF=-x2+1,再利用二次函數(shù)即可求得CF的最大值.

          詳解:(1)①∵AB=AC,BAC=90°,

          ∴線段AD繞點A逆時針旋轉(zhuǎn)90°得到AE,

          AD=AE,BAD=CAE,

          ∴△BAD≌△CAE,

          CE=BD,ACE=B,

          ∴∠BCE=BCA+ACE=90°,

          BDCE;

          故答案為:CE=BD,CEBD.

          (2)(1)中的結論仍然成立.理由如下:

          如圖,∵線段AD繞點A逆時針旋轉(zhuǎn)90°得到AE,

          AE=AD,DAE=90°,

          AB=AC,BAC=90°

          ∴∠CAE=BAD,

          ∴△ACE≌△ABD,

          CE=BD,ACE=B,

          ∴∠BCE=90°,即CEBD,

          ∴線段CE,BD之間的位置關系和數(shù)量關系分別為:CE=BD,CEBD.

          (3)如圖3,過AAMBCM,ENAMN,

          ∵線段AD繞點A逆時針旋轉(zhuǎn)90°得到AE

          ∴∠DAE=90°,AD=AE,

          ∴∠NAE=ADM,

          易證得RtAMDRtENA,

          NE=AM,

          ∵∠ACB=45°,

          ∴△AMC為等腰直角三角形,

          AM=MC,

          MC=NE,

          AMBC,ENAM,

          NEMC,

          ∴四邊形MCEN為平行四邊形,

          ∵∠AMC=90°,

          ∴四邊形MCEN為矩形,

          ∴∠DCF=90°,

          RtAMDRtDCF,

          ,

          DC=x,

          ∵∠ACB=45°,AC=,

          AM=CM=1,MD=1-x,

          ,

          CF=-x2+x=-(x-2+,

          ∴當x=時有最大值,CF最大值為

          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖(1),在四邊形中,,,動點從點出發(fā),沿運動至點停止.設點運動的路程為,的面積為,如果關于的函數(shù)圖象如圖(2)所示,則的面積是(

          A.6B.5C.4D.3

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,已知,且、、、四點在同一直線上.

          1)在圖1中,請你用無刻度的直尺作出線段的垂直平分線;

          2)在圖2中,請你用無刻度的直尺作出線段的垂直平分線.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖所示,已知中,厘米,分別從點、點同時出發(fā),沿三角形的邊運動,已知點的速度是1厘米/秒的速度,點的速度是2厘米/秒,當點第一次到達點時,、同時停止運動.

          1、同時運動幾秒后,、兩點重合?

          2、同時運動幾秒后,可得等邊三角形

          3、邊上運動時,能否得到以為底邊的等腰,如果存在,請求出此時運動的時間?

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,已知正方形DEFG的頂點D、E在△ABC的邊BC上,頂點G、F分別在邊AB、AC上,如果BC=5,ABC的面積是10,那么這個正方形的邊長是_____

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖四邊形ABCD為平行四邊形,延長AD到E,使DE=AD連接EB,EC,DB添加一個條件,不能使四邊形DBCE成為矩形的是( )

          A)AB=BE BBEDC CADB=90° DCEDE

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在中,平分,交于點E,平分,交于點F,交于點P,連結,.

          1)求證:四邊形是菱形.

          2)若,,,求的值.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】已知關于的一元二次方程有兩個實數(shù)根.

          為正整數(shù),求此方程的根.

          設此方程的兩個實數(shù)根為,若,求的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,正方形ABCD的邊長為4,點E是AB上的一點,將△BCE沿CE折疊至△FCE,若CF,CE恰好與以正方形ABCD的中心為圓心的⊙O相切,則折痕CE的長為

          查看答案和解析>>

          同步練習冊答案