日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】聊城“水城之眼”摩天輪是亞洲三大摩天輪之一,也是全球首座建筑與摩天輪相結(jié)合的城市地標(biāo),如圖,點(diǎn)O是摩天輪的圓心,長(zhǎng)為110米的AB是其垂直地面的直徑,小瑩在地面C點(diǎn)處利用測(cè)角儀測(cè)得摩天輪的最高點(diǎn)A的仰角為33°,測(cè)得圓心O的仰角為21°,則小瑩所在C點(diǎn)到直徑AB所在直線的距離約為(tan33°≈0.65,tan21°≈0.38)( 。

          A.169米
          B.204米
          C.240米
          D.407米

          【答案】B
          【解析】解:

          過C作CD⊥AB于D,
          在Rt△ACD中,AD=CDtan∠ACD=CDtan33°,
          在Rt△BCO中,OD=CDtan∠BCO=CDtan21°,
          ∵AB=110m,
          ∴AO=55m,
          ∴A0=AD﹣OD=CDtan33°﹣CDtan21°=55m,
          ∴CD= = ≈204m,
          答:小瑩所在C點(diǎn)到直徑AB所在直線的距離約為204m.
          故選B.
          過C作CD⊥AB于D,在Rt△ACD中,求得AD=CDtan∠ACD=CDtan33°,在Rt△BCO中,求得OD=CDtan∠BCO=CDtan21°,列方程即可得到結(jié)論.此題主要考查了仰角與俯角的問題,利用兩個(gè)直角三角形擁有公共直角邊,能夠合理的運(yùn)用這條公共邊是解答此題的關(guān)鍵.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】我們定義:有一組鄰角相等的凸四邊形叫做“等鄰角四邊形”

          (1)概念理解:
          請(qǐng)你根據(jù)上述定義舉一個(gè)等鄰角四邊形的例子;
          (2)問題探究;
          如圖1,在等鄰角四邊形ABCD中,∠DAB=∠ABC,AD,BC的中垂線恰好交于AB邊上一點(diǎn)P,連結(jié)AC,BD,試探究AC與BD的數(shù)量關(guān)系,并說明理由;
          (3)應(yīng)用拓展;
          如圖2,在Rt△ABC與Rt△ABD中,∠C=∠D=90°,BC=BD=3,AB=5,將Rt△ABD繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)角α(0°<∠α<∠BAC)得到Rt△AB′D′(如圖3),當(dāng)凸四邊形AD′BC為等鄰角四邊形時(shí),求出它的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知點(diǎn)P(a+1,﹣ +1)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)在第四象限,則a的取值范圍在數(shù)軸上表示正確的是(  )
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,將一矩形紙片ABCD折疊,使兩個(gè)頂點(diǎn)A,C重合,折痕為FG.若AB=4,BC=8,則△ABF的面積為

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣2x+10與x軸,y軸相交于A,B兩點(diǎn),點(diǎn)C的坐標(biāo)是(8,4),連接AC,BC.

          (1)求過O,A,C三點(diǎn)的拋物線的解析式,并判斷△ABC的形狀;
          (2)動(dòng)點(diǎn)P從點(diǎn)O出發(fā),沿OB以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)B運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),沿BC以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)C運(yùn)動(dòng).規(guī)定其中一個(gè)動(dòng)點(diǎn)到達(dá)端點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒,當(dāng)t為何值時(shí),PA=QA?
          (3)在拋物線的對(duì)稱軸上,是否存在點(diǎn)M,使以A,B,M為頂點(diǎn)的三角形是等腰三角形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣3,5),B(﹣2,1),C(﹣1,3).

          (1)若△ABC經(jīng)過平移后得到△A1B1C1 , 已知點(diǎn)C1的坐標(biāo)為(4,0),寫出頂點(diǎn)A1 , B1的坐標(biāo);
          (2)若△ABC和△A1B2C2關(guān)于原點(diǎn)O成中心對(duì)稱圖形,寫出△A1B2C2的各頂點(diǎn)的坐標(biāo);
          (3)將△ABC繞著點(diǎn)O按順時(shí)針方向旋轉(zhuǎn)90°得到△A2B3C3 , 寫出△A2B3C3的各頂點(diǎn)的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)x1、x2是方程x2﹣4x+m=0的兩個(gè)根,且x1+x2﹣x1x2=1,則x1+x2= , m=

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】為了豐富同學(xué)們的課余生活,某學(xué)校舉行“親近大自然”戶外活動(dòng),現(xiàn)隨機(jī)抽取了部分學(xué)生進(jìn)行主題為“你最想去的景點(diǎn)是?”的問卷調(diào)查,要求學(xué)生只能從“A(植物園),B(花卉園),C(濕地公園),D(森林公園)”四個(gè)景點(diǎn)中選擇一項(xiàng),根據(jù)調(diào)查結(jié)果,繪制了如下兩幅不完整的統(tǒng)計(jì)圖.

          請(qǐng)解答下列問題:
          (1)本次調(diào)查的樣本容量是;
          (2)補(bǔ)全條形統(tǒng)計(jì)圖;
          (3)若該學(xué)校共有3600名學(xué)生,試估計(jì)該校最想去濕地公園的學(xué)生人數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】黔東南州某中學(xué)為了解本校學(xué)生平均每天的課外學(xué)習(xí)實(shí)踐情況,隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查,并將調(diào)查結(jié)果分為A,B,C,D四個(gè)等級(jí),設(shè)學(xué)生時(shí)間為t(小時(shí)),A:t<1,B:1≤t<1.5,C:1.5≤t<2,D:t≥2,根據(jù)調(diào)查結(jié)果繪制了如圖所示的兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)圖中信息解答下列問題:

          (1)本次抽樣調(diào)查共抽取了多少名學(xué)生?并將條形統(tǒng)計(jì)圖補(bǔ)充完整;
          (2)本次抽樣調(diào)查中,學(xué)習(xí)時(shí)間的中位數(shù)落在哪個(gè)等級(jí)內(nèi)?
          (3)表示B等級(jí)的扇形圓心角α的度數(shù)是多少?
          (4)在此次問卷調(diào)查中,甲班有2人平均每天課外學(xué)習(xí)時(shí)間超過2小時(shí),乙班有3人平均每天課外學(xué)習(xí)時(shí)間超過2小時(shí),若從這5人中任選2人去參加座談,試用列表或化樹狀圖的方法求選出的2人來自不同班級(jí)的概率.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案