日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網 > 初中數學 > 題目詳情
          (2006•鄂州)如圖,直線y=-+8與x軸、y軸分別交于點A和B,M是OB上的一點,若將△ABM沿AM折疊,點B恰好落在x軸上的點B′處.
          (1)試確定直線AM的函數關系式;
          (2)求過A、B、M三點的拋物線的函數關系式.

          【答案】分析:(1)已知直線y=+8與x、y軸分別交于A、B,又因為點B恰好落在B′處,故可知△ABM≌△AMB′.令x、y為0求出A、B的坐標.設AM的函數關系式為y=ax+b即可.
          (2)設過A、B、M三點的拋物線的函數關系式為y=ax2+bx+c.根據(1)把A、B、M三點的坐標代入可得關系式.
          解答:解:(1)設OM=x,
          ∵直線y=-+8與x軸、y軸分別交于點A和B,
          當x=0時,y=8,y=0時,x=6,
          ∴A(6,0),B(0,8),
          ∴AB=10,B′O=10-6=4,
          ∴BM=8-x,
          在Rt△B′OM中,根據勾股定理得到x2+42=(8-x)2,
          ∴x=3,
          ∴M(0,3),
          設直線AM的解析式為y=ax+b,

          解得a=-,b=3
          ∴直線AM:y=-x+3;

          (2)令x=0,可得點B坐標為(0,8)
          ∴AB==,則點B′坐標為(3-,0)而點M坐標為(0,3)
          設過A、B、M三點的拋物線的函數關系式為y=ax2+bx+c,將三點代入可得
          y=-x2+x+3.
          點評:本題考查的是二次函數的綜合運用,解題的關鍵的是找準關系式解出坐標.難度中等.
          練習冊系列答案
          相關習題

          科目:初中數學 來源:2006年全國中考數學試題匯編《二次函數》(10)(解析版) 題型:解答題

          (2006•鄂州)如圖,直線y=-+8與x軸、y軸分別交于點A和B,M是OB上的一點,若將△ABM沿AM折疊,點B恰好落在x軸上的點B′處.
          (1)試確定直線AM的函數關系式;
          (2)求過A、B、M三點的拋物線的函數關系式.

          查看答案和解析>>

          科目:初中數學 來源:2006年湖北省鄂州市中考數學試卷(解析版) 題型:解答題

          (2006•鄂州)如圖,在梯形ABCD中,AD∥BC,∠B=90°,AB=3 cm,AD=8 cm,BC=12 cm,點P從點B開始沿折線B?C?D?A以4 cm/s的速度移動,點Q從點D開始沿DA邊向A點以1 cm/s的速度移動.若點P、Q分別從B、D同時出發(fā),當其中一個點到達點A時,另一點也隨之停止移動.設移動時間為t(s).
          求當t為何值時:
          (1)四邊形PCDQ為平行四邊形;
          (2)四邊形PCDQ為等腰梯形;
          (3)PQ=3cm.

          查看答案和解析>>

          科目:初中數學 來源:2006年湖北省鄂州市中考數學試卷(解析版) 題型:解答題

          (2006•鄂州)如圖,已知⊙Ol與⊙O2相交于A、B兩點,過點A作⊙Ol的弦AC,連接CB并延長交⊙O2于點D,連AD.若∠CAB=∠D.
          (1)求證:AC是⊙O2的切線;
          (2)若AB:AD=1:2,CD=6,求AC的長.

          查看答案和解析>>

          科目:初中數學 來源:2006年湖北省鄂州市中考數學試卷(解析版) 題型:選擇題

          (2006•鄂州)如圖,在等腰梯形ABCD中,AB∥CD,AC⊥BD,垂足為O.有以下四個結論:①△AOD≌△BOC;②△AOB∽△COD;③S梯形ABCD=;④S△AOD2=S△AOB•S△COD.其中始終正確的有( )

          A.1個
          B.2個
          C.3個
          D.4個

          查看答案和解析>>

          同步練習冊答案