日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,拋物線x軸于A,B兩點(diǎn),交y軸于點(diǎn)C.直線經(jīng)過(guò)點(diǎn)A,C

          1)求拋物線的解析式;

          2)點(diǎn)P是拋物線上一動(dòng)點(diǎn),過(guò)點(diǎn)Px軸的垂線,交直線AC于點(diǎn)M,設(shè)點(diǎn)P的橫坐標(biāo)為m

          ①當(dāng)是直角三角形時(shí),求點(diǎn)P的坐標(biāo);

          ②作點(diǎn)B關(guān)于點(diǎn)C的對(duì)稱點(diǎn),則平面內(nèi)存在直線l,使點(diǎn)M,B到該直線的距離都相等.當(dāng)點(diǎn)Py軸右側(cè)的拋物線上,且與點(diǎn)B不重合時(shí),請(qǐng)直接寫出直線的解析式.(k,b可用含m的式子表示)

          【答案】12)①,②直線l的解析式為,.

          【解析】

          1)利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出點(diǎn)A,C的坐標(biāo),根據(jù)點(diǎn)AC的坐標(biāo),利用待定系數(shù)法可求出二次函數(shù)解析式;
          2)①由PMx軸可得出∠PMC≠90°,分∠MPC=90°及∠PCM=90°兩種情況考慮:(i)當(dāng)∠MPC=90°時(shí),PCx軸,利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出點(diǎn)P的坐標(biāo);(ii)當(dāng)∠PCM=90°時(shí),設(shè)PCx軸交于點(diǎn)D,易證AOC∽△COD,利用相似三角形的性質(zhì)可求出點(diǎn)D的坐標(biāo),根據(jù)點(diǎn)C,D的坐標(biāo),利用待定系數(shù)法可求出直線PC的解析式,聯(lián)立直線PC和拋物線的解析式成方程組,通過(guò)解方程組可求出點(diǎn)P的坐標(biāo).綜上,此問(wèn)得解;
          ②利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征及一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可得出點(diǎn)B,M的坐標(biāo),結(jié)合點(diǎn)C的坐標(biāo)可得出點(diǎn)B′的坐標(biāo),根據(jù)點(diǎn)M,BB′的坐標(biāo),利用待定系數(shù)法可分別求出直線BM,B′MBB′的解析式,利用平行線的性質(zhì)可求出直線l的解析式.

          解:(1)當(dāng)時(shí),,

          點(diǎn)C的坐標(biāo)為;

          當(dāng)時(shí),,

          解得:,

          點(diǎn)A的坐標(biāo)為

          ,代入,得:

          ,解得:

          拋物線的解析式為

          2)①軸,

          ,

          分兩種情況考慮,如圖1所示.

          i)當(dāng)時(shí),軸,

          點(diǎn)P的縱坐標(biāo)為﹣2

          當(dāng)時(shí),

          解得:,,

          點(diǎn)P的坐標(biāo)為;

          ii)當(dāng)時(shí),設(shè)PCx軸交于點(diǎn)D

          ,

          ,

          ,即,

          ,

          點(diǎn)D的坐標(biāo)為

          設(shè)直線PC的解析式為,

          ,代入,得:

          ,解得:,

          直線PC的解析式為

          聯(lián)立直線PC和拋物線的解析式成方程組,得:,

          解得:,

          點(diǎn)P的坐標(biāo)為

          綜上所述:當(dāng)是直角三角形時(shí),點(diǎn)P的坐標(biāo)為

          ②當(dāng)y=0時(shí),,

          解得:x1=-4,x2=2,
          ∴點(diǎn)B的坐標(biāo)為(20).
          ∵點(diǎn)C的坐標(biāo)為(0,-2),點(diǎn)B,B′關(guān)于點(diǎn)C對(duì)稱,
          ∴點(diǎn)B′的坐標(biāo)為(-2-4).
          ∵點(diǎn)P的橫坐標(biāo)為mm0m≠2),
          ∴點(diǎn)M的坐標(biāo)為,

          利用待定系數(shù)法可求出:直線BM的解析式為,直線B′M的解析式為,直線BB′的解析式為y=x-2
          分三種情況考慮,如圖2所示:


          當(dāng)直線lBM且過(guò)點(diǎn)C時(shí),直線l的解析式為,

          當(dāng)直線lB′M且過(guò)點(diǎn)C時(shí),直線l的解析式為,

          當(dāng)直線lBB′且過(guò)線段CM的中點(diǎn)時(shí),直線l的解析式為,

          綜上所述:直線l的解析式為,.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】小東根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)的圖象與性質(zhì)進(jìn)行了探究.下面是小東的探究過(guò)程,請(qǐng)補(bǔ)充完整,并解決相關(guān)問(wèn)題:

          (1)函數(shù)的自變量x的取值范圍是

          (2)下表是yx的幾組對(duì)應(yīng)值.

          x

          0

          1

          2

          3

          4

          y

          2

          4

          2

          m

          表中m的值為_(kāi)_______________;

          (3)如圖,在平面直角坐標(biāo)系中,描出了以上表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn). 根據(jù)描出的點(diǎn),畫(huà)出函數(shù)的大致圖象;

          (4)結(jié)合函數(shù)圖象,請(qǐng)寫出函數(shù)的一條性質(zhì):______________________.

          (5)解決問(wèn)題:如果函數(shù)與直線y=a的交點(diǎn)有2個(gè),那么a的取值范圍是______________ .

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在ABCD中,AB6AD9,∠BAD的平分線交BC于點(diǎn)E,交DC的延長(zhǎng)線于點(diǎn)F,BGAE,垂足為G,BG4,則CEF的周長(zhǎng)為( 。

          A.11.5B.10C.9.5D.8

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】閱讀材料:各類方程的解法

          求解一元一次方程,根據(jù)等式的基本性質(zhì),把方程轉(zhuǎn)化為x=a的形式.求解二元一次方程組,把它轉(zhuǎn)化為一元一次方程來(lái)解;類似的,求解三元一次方程組,把它轉(zhuǎn)化為解二元一次方程組.求解一元二次方程,把它轉(zhuǎn)化為兩個(gè)一元一次方程來(lái)解.求解分式方程,把它轉(zhuǎn)化為整式方程來(lái)解,由于去分母可能產(chǎn)生增根,所以解分式方程必須檢驗(yàn).各類方程的解法不盡相同,但是它們有一個(gè)共同的基本數(shù)學(xué)思想轉(zhuǎn)化,把未知轉(zhuǎn)化為已知.

          轉(zhuǎn)化的數(shù)學(xué)思想,我們還可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通過(guò)因式分解把它轉(zhuǎn)化為x(x2+x-2)=0,解方程x=0x2+x-2=0,可得方程x3+x2-2x=0的解.

          (1)問(wèn)題:方程x3+x2-2x=0的解是x1=0,x2= ,x3= ;

          (2)拓展:用轉(zhuǎn)化思想求方程的解;

          (3)應(yīng)用:如圖,已知矩形草坪ABCD的長(zhǎng)AD=8m,寬AB=3m,小華把一根長(zhǎng)為10m的繩子的一端固定在點(diǎn)B,沿草坪邊沿BA,AD走到點(diǎn)P處,把長(zhǎng)繩PB段拉直并固定在點(diǎn)P,然后沿草坪邊沿PD、DC走到點(diǎn)C處,把長(zhǎng)繩剩下的一段拉直,長(zhǎng)繩的另一端恰好落在點(diǎn)C.求AP的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知AB=8,P為線段AB上一個(gè)動(dòng)點(diǎn),分別以AP,PB為邊在AB的同側(cè)作菱形APCDPBFE,點(diǎn)P,C,E在一條直線上,∠DAP=60°,M,N分別是對(duì)角線AC,BE的中點(diǎn),當(dāng)點(diǎn)P在線段AB上移動(dòng)時(shí),點(diǎn)M,N之間的距離最短為( )

          A. B. C. 4D. 3

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知矩形的一條邊,將矩形折疊,使得頂點(diǎn)落在邊上的點(diǎn)處. 如圖,已知折痕與邊交于點(diǎn),連結(jié).

          1)求證:;

          2)若,求邊的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】小李駕駛小汽車勻速地從A地行駛到B地,行駛里程為360千米,設(shè)小汽車的行駛時(shí)間為t(單位:小時(shí)),行駛速度為v(單位:千米/小時(shí)),且全程速度限定為不超過(guò)120千米/小時(shí).

          1)求v關(guān)于t的函數(shù)表達(dá)式(不用寫取值范圍);

          2)小李上午8點(diǎn)駕駛小汽車從A地出發(fā).

          ①小李需在當(dāng)天12點(diǎn)至13點(diǎn)間到達(dá)B地,求小汽車行駛速度v的范圍.

          ②小李能否在當(dāng)天11點(diǎn)30分前到達(dá)B地?說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知二次函數(shù)的圖象經(jīng)過(guò)(﹣1,0),(3,0),(1,﹣5)三點(diǎn).

          1)求該二次函數(shù)的解析式;

          2)求該圖象的頂點(diǎn)坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,利用一面墻(墻的長(zhǎng)度不超過(guò)45m),用80m長(zhǎng)的籬笆圍一個(gè)矩形場(chǎng)地.

          1)怎樣圍才能使矩形場(chǎng)地的面積為750m2?

          2)能否使所圍矩形場(chǎng)地的面積為810m2,為什么?

          3)怎樣圍才能使圍出的矩形場(chǎng)地面積最大?最大面積為多少?請(qǐng)通過(guò)計(jì)算說(shuō)明.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案