【題目】某商場計劃購進A,B兩種新型節(jié)能臺燈共100盞,A型燈每盞進價為30元,售價為45元;B型臺燈每盞進價為50元,售價為70元.
(1)若商場預計進貨款為3500元,求A型、B型節(jié)能燈各購進多少盞?
根據題意,先填寫下表,再完成本問解答:
型號 | A型 | B型 |
購進數量(盞) | x | _____ |
購買費用(元) | _____ | _____ |
(2)若商場規(guī)定B型臺燈的進貨數量不超過A型臺燈數量的3倍,應怎樣進貨才能使商場在銷售完這批臺燈時獲利最多?此時利潤為多少元?
【答案】(1)30x, y,50y;(2)商場購進A型臺燈25盞,B型臺燈75盞,銷售完這批臺燈時獲利最多,此時利潤為1875元.
【解析】
(1)設商場應購進A型臺燈x盞,表示出B型臺燈為y盞,然后根據“A,B兩種新型節(jié)能臺燈共100盞”、“進貨款=A型臺燈的進貨款+B型臺燈的進貨款”列出方程組求解即可;
(2)設商場銷售完這批臺燈可獲利y元,根據獲利等于兩種臺燈的獲利總和列式整理,再求出x的取值范圍,然后根據一次函數的增減性求出獲利的最大值.
(1)設商場應購進A型臺燈x盞,則B型臺燈為y盞,根據題意得:
解得:.
答:應購進A型臺燈75盞,B型臺燈25盞.
故答案為:30x;y;50y;
(2)設商場應購進A型臺燈x盞,銷售完這批臺燈可獲利y元,則y=(45﹣30)x+(70﹣50)(100﹣x)=15x+2000﹣20x=﹣5x+2000,即y=﹣5x+2000.
∵B型臺燈的進貨數量不超過A型臺燈數量的3倍,∴100﹣x≤3x,∴x≥25.
∵k=﹣5<0,y隨x的增大而減小,∴x=25時,y取得最大值,為﹣5×25+2000=1875(元).
答:商場購進A型臺燈25盞,B型臺燈75盞,銷售完這批臺燈時獲利最多,此時利潤為1875元.
科目:初中數學 來源: 題型:
【題目】(材料閱讀)我們曾解決過課本中的這樣一道題目:
如圖,四邊形是正方形,
為
邊上一點,延長
至
,使
,連接
.……
提煉1:繞點
順時針旋轉90°得到
;
提煉2:;
提煉3:旋轉、平移、軸對稱是圖形全等變換的三種方式.
(問題解決)(1)如圖,四邊形是正方形,
為
邊上一點,連接
,將
沿
折疊,點
落在
處,
交
于點
,連接
.可得:
°;
三者間的數量關系是
(2)如圖,四邊形的面積為8,
,
,連接
.求
的長度.
(3)如圖,在中,
,
,點
在邊
上,
.寫出
間的數量關系,并證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,等腰三角形ABC底邊BC的長為4 cm,面積為12 cm2,腰AB的垂直平分線EF交AB于點E,交AC于點F,若D為BC邊上的中點,M為線段EF上一點,則△BDM的周長最小值為( )
A. 5 cm B. 6 cm C. 8 cm D. 10 cm
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,∠ACD是△ABC的外角,∠ABC的平分線與∠ACD的平分線交于點A1,∠A1BC的平分線與∠A1CD的平分線交于點A2,…,∠An﹣1BC的平分線與∠An﹣1CD的平分線交于點An.設∠A=θ.則:(1)∠A1=_____;(2)∠A2=_____;(3)∠An=_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下面是小董設計的“作已知圓的內接正三角形”的尺規(guī)作圖過程.
已知:⊙O.
求作:⊙O的內接正三角形.
作法:如圖,
①作直徑AB;
②以B為圓心,OB為半徑作弧,與⊙O交于C,D兩點;
③連接AC,AD,CD.
所以△ACD就是所求的三角形.
根據小董設計的尺規(guī)作圖過程,
(1)使用直尺和圓規(guī),補全圖形;(保留作圖痕跡)
(2)完成下面的證明:
證明:在⊙O中,連接OC,OD,BC,BD,
∵OC=OB=BC,
∴△OBC為等邊三角形(_______________)(填推理的依據).
∴∠BOC=60°.
∴∠AOC=180°-∠BOC=120°.
同理∠AOD=120°,
∴∠COD=∠AOC=∠AOD=120°.
∴AC=CD=AD(_______________)(填推理的依據).
∴△ACD是等邊三角形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,是小亮晚上在廣場散步的示意圖,圖中線段表示站立在廣場上的小亮,線段
表示直立在廣場上的燈桿,點
表示照明燈的位置.
在小亮由
處沿
所在的方向行走到達
處的過程中,他在地面上的影子長度越來越________(用“長”或“短”填空);請你在圖中畫出小亮站在
處的影子
;
當小亮離開燈桿的距離
時,身高為
的小亮的影長為
,
①燈桿的高度為多少?
②當小亮離開燈桿的距離時,小亮的影長變?yōu)槎嗌?/span>
?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某開發(fā)公司生產的 960 件新產品需要精加工后,才能投放市場,現甲、乙兩個工廠都想加工這批產品,已知甲工廠單獨加工完成這批產品比乙工廠單獨加工完成這批產品多用 20 天,而甲工廠每天加工的數量是乙工廠每天加工的數量的,公司需付甲工廠加工費用為每天 80 元,乙工廠加工費用為每天 120 元.
(1)甲、乙兩個工廠每天各能加工多少件新產品?
(2)公司制定產品加工方案如下:可以由每個廠家單獨完成,也可以由兩個廠家合作完成.在加工過程中,公司派一名工程師每天到廠進行技術指導,并負擔每天 15 元的午餐補助費, 請你幫公司選擇一種既省時又省錢的加工方案,并說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com