日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,AB=AC=10cm,BC=12cm,BF∥AC,點(diǎn)P、Q均以1cm/s的速度同時(shí)分別從C、A出發(fā)沿CA,AB的方向運(yùn)動(dòng)(當(dāng)P到達(dá)A點(diǎn)時(shí),點(diǎn)P、Q均停止運(yùn)動(dòng)),過點(diǎn)P作PE∥BC,分別交AB、BF于點(diǎn)G、E,設(shè)運(yùn)動(dòng)時(shí)間為ts.
          (1)直接判斷并填寫:
          經(jīng)過t秒,線段AP=______cm(用含t的代數(shù)式表示),線段QE______QP(用“>、<、=、≥、≤”符號(hào)表示);
          (2)四邊形EBPA的面積會(huì)變化嗎?請(qǐng)說明理由:
          (3)①當(dāng)0<t<5時(shí),求出四邊形EBPA的面積S與t的函數(shù)關(guān)系式;
          ②試探究:當(dāng)t為何值時(shí),四邊形EBPQ是梯形.

          解:(1)PA的長度為:10-t,
          QE=PQ.

          (2)四邊形EBPA的面積不會(huì)變化.
          ∵BF∥AC,
          ∴BF與AC的距離處處相等.
          設(shè)EF與AC的距離為h,
          又∵PE∥BC,
          ∴四邊形EBCP是平行四邊形.
          ∴EB=PC=t,AP=10-t,
          ∴S四邊形EBPA=(EB+AP)h=(t+10-t)•h=5h;

          (3)①AQ=t,則BQ=10-t,
          又∵AP=10-t,EB=t,
          ∴EB=AQ,BQ=AP,
          又∵BF∥AC,
          ∴∠EBA=∠QAP,
          ∴△EBQ≌△QAP,
          在△ABC中,AB=AC=10cm,BC=12cm,作AH⊥BC于H,
          則CH=BC=×12=6,
          AH===8,
          作BM⊥AC于點(diǎn)M,
          ∵S△ABC=•BC•AH=•AC•BM,
          ∴12×8=10•BM
          BM=,
          ∴S△ABP=(10-t)×,
          即S=48-t.

          ∵BF∥AC,∴BE不平行于PQ,
          ∴當(dāng)EQ∥BP時(shí),四邊形EBPQ是梯形.
          ∴∠GEQ=∠GPB,∠EQB=∠GBP,
          ∴△EGQ∽△PGB,

          又∵AB=AC,
          ∴∠ABC=∠C.
          又∵PG∥BC,且PG≠BC,
          ∴四邊形GBCP是等腰梯形,
          ∴GB=PC=t,
          ∴GQ=10-2t,
          同理可證△AGP∽△EGB,
          =
          =,
          化簡得:t2-30t+100=0,
          解得:t1=15+5(舍去),t2=15-5,
          當(dāng)t=15-5是,四邊形EBPQ是梯形.
          分析:(1)因?yàn)锳C=10cm,點(diǎn)P以以1cm/s的速度從A出發(fā),從而可得出代數(shù)式,線段QE和QP相等.
          (2)四邊形EBPA的面積不會(huì)變化,可求出四邊形的面積.
          (3)根據(jù)三角形全等和勾股定理,以及三角形的面積表示出四邊形的面積求出解以及根據(jù)梯形的概念判斷出梯形.
          點(diǎn)評(píng):本題考查平行四邊形的判定和性質(zhì),全等三角形的判定和性質(zhì),梯形的概念等知識(shí)點(diǎn).
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          24、如圖,AB=AC=AD.
          (1)如果AD∥BC,那么∠C和∠D有怎樣的數(shù)量關(guān)系?證明你的結(jié)論;
          (2)如果∠C=2∠D,那么你能得到什么結(jié)論?證明你的結(jié)論.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•虹口區(qū)一模)已知:如圖,AB=AC,∠DAE=∠B.
          求證:△ABE∽△DCA.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•來賓)如圖,AB=AC,D,E分別是AB,AC上的點(diǎn),下列條件中不能證明△ABE≌△ACD的是
          ( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,AB=AC,∠C=67°,AB的垂直平分線EF交AC于點(diǎn)D,求∠DBC的度數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,AB=AC=10,∠A=40°,AB的垂直平分線MN交AC于點(diǎn)D,求:
          (1)∠ABD的度數(shù);
          (2)若△BCD的周長是m,求BC的長.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案