日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,分別是可活動的菱形和平行四邊形學(xué)具,已知平行四邊形較短的邊與菱形的邊長相等.

          (1)在一次數(shù)學(xué)活動中,某小組學(xué)生將菱形的一邊與平行四邊形較短邊重合,擺拼成如圖1所示的圖形,AF經(jīng)過點C,連接DE交AF于點M,觀察發(fā)現(xiàn):點M是DE的中點.
          下面是兩位學(xué)生有代表性的證明思路:
          思路1:不需作輔助線,直接證三角形全等;
          思路2:不證三角形全等,連接BD交AF于點H.…
          請參考上面的思路,證明點M是DE的中點(只需用一種方法證明);
          (2)如圖2,在(1)的前提下,當(dāng)∠ABE=135°時,延長AD、EF交于點N,求 的值;
          (3)在(2)的條件下,若 =k(k為大于 的常數(shù)),直接用含k的代數(shù)式表示 的值.

          【答案】
          (1)

          解:如圖1,

          證法一:∵四邊形ABCD為菱形,

          ∴AB=CD,AB∥CD,

          ∵四邊形ABEF為平行四邊形,

          ∴AB=EF,AB∥EF,

          ∴CD=EF,CD∥EF,

          ∴∠CDM=∠FEM,

          在△CDM和△FEM中

          ∴△CDM≌△FEM,

          ∴DM=EM,

          即點M是DE的中點;

          證法二:∵四邊形ABCD為菱形,

          ∴DH=BH,

          ∵四邊形ABEF為平行四邊形,

          ∴AF∥BE,

          ∵HM∥BE,

          = =1,

          ∴DM=EM,

          即點M是DE的中點;


          (2)

          解:∵△CDM≌△FEM,

          ∴CM=FM,

          設(shè)AD=a,CM=b,

          ∵∠ABE=135°,

          ∴∠BAF=45°,

          ∵四邊形ABCD為菱形,

          ∴∠NAF=45°,

          ∴四邊形ABCD為正方形,

          ∴AC= AD= a,

          ∵AB∥EF,

          ∴∠AFN=∠BAF=45°,

          ∴△ANF為等腰直角三角形,

          ∴NF= AF= a+b+b)=a+ b,

          ∴NE=NF+EF=a+ b+a=2a+ b,

          = = =


          (3)

          解:∵ = = + =k,

          =k﹣ ,

          = ,

          = = +1= +1=


          【解析】(1)證法一,利用菱形性質(zhì)得AB=CD,AB∥CD,利用平行四邊形的性質(zhì)得AB=EF,AB∥EF,則CD=EF,CD∥EF,再根據(jù)平行線的性質(zhì)得∠CDM=∠FEM,則可根據(jù)“AAS”判斷△CDM≌△FEM,所以DM=EM;
          證法二,利用菱形性質(zhì)得DH=BH,利用平行四邊形的性質(zhì)得AF∥BE,再根據(jù)平行線分線段成比例定理得到 = =1,所以DM=EM;(2)由△CDM≌△FEM得到CM=FM,設(shè)AD=a,CM=b,則FM=b,EF=AB=a,再證明四邊形ABCD為正方形得到AC= a,接著證明△ANF為等腰直角三角形得到NF=a+ b,則NE=NF+EF=2a+ b,然后計算 的值;(3)由于 = = + =k,則 = ,然后表示出 = = +1,再把 = 代入計算即可.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,拋物線y= x2 x﹣2與x軸交與A,B兩點(點B在點A的右側(cè)),與y軸交于點C,點D與點C關(guān)于x軸對稱,連接BD

          (1)求點A,B,C的坐標(biāo).
          (2)當(dāng)點P時x軸上的一個動點,設(shè)點P的坐標(biāo)為(m,0),過點P作x軸的垂線l,交拋物線于點M,交直線BD于點N
          ①當(dāng)點P在線段OB上運動時(不與O、B重合),求m為何值時,線段MN的長度最大,并說明此時四邊形DCMN是否為平行四邊形
          ②當(dāng)點P的運動過程中,是否存在點M,使△BDM是以BD為直角邊的直角三角形?若存在,請直接寫出點M的坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,“中國海監(jiān)50”正在南海海域A處巡邏,島礁B上的中國海軍發(fā)現(xiàn)點A在點B的正西方向上,島礁C上的中國海軍發(fā)現(xiàn)點A在點C的南偏東30°方向上,已知點C在點B的北偏西60°方向上,且B、C兩地相距120海里.

          (1)求出此時點A到島礁C的距離;
          (2)若“中海監(jiān)50”從A處沿AC方向向島礁C駛?cè),?dāng)?shù)竭_點A′時,測得點B在A′的南偏東75°的方向上,求此時“中國海監(jiān)50”的航行距離.(注:結(jié)果保留根號)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知拋物線c1的頂點為A(﹣1,4),與y軸的交點為D(0,3).

          (1)求c1的解析式;
          (2)若直線l1:y=x+m與c1僅有唯一的交點,求m的值;
          (3)若拋物線c1關(guān)于y軸對稱的拋物線記作c2 , 平行于x軸的直線記作l2:y=n.試結(jié)合圖形回答:當(dāng)n為何值時,l2與c1和c2共有:①兩個交點;②三個交點;③四個交點;
          (4)若c2與x軸正半軸交點記作B,試在x軸上求點P,使△PAB為等腰三角形.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,將坐標(biāo)原點O沿x軸向左平移2個單位長度得到點A,過點A作y軸的平行線交反比例函數(shù)y= 的圖象于點B,AB=

          (1)求反比例函數(shù)的解析式;
          (2)若P(x1 , y1)、Q(x2 , y2)是該反比例函數(shù)圖象上的兩點,且x1<x2時,y1>y2 , 指出點P、Q各位于哪個象限?并簡要說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,正方形ABCD中,BC=2,點M是邊AB的中點,連接DM,DM與AC交于點P,點E在DC上,點F在DP上,且∠DFE=45°.若PF= ,則CE=

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,AD平分∠BAC,AD⊥BD,垂足為點D,DE∥AC. 求證:△BDE是等腰三角形.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,地面上小山的兩側(cè)有A,B兩地,為了測量A,B兩地的距離,讓一熱氣球從小山西側(cè)A地出發(fā)沿與AB成30°角的方向,以每分鐘40m的速度直線飛行,10分鐘后到達C處,此時熱氣球上的人測得CB與AB成70°角,請你用測得的數(shù)據(jù)求A,B兩地的距離AB長.(結(jié)果用含非特殊角的三角函數(shù)和根式表示即可)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在正方形ABCD中,點E,F(xiàn)分別在BC,CD上,且∠EAF=45°,將△ABE繞點A順時針旋轉(zhuǎn)90°,使點E落在點E'處,則下列判斷不正確的是(
          A.△AEE′是等腰直角三角形
          B.AF垂直平分EE'
          C.△E′EC∽△AFD
          D.△AE′F是等腰三角形

          查看答案和解析>>

          同步練習(xí)冊答案