【題目】程老師制作了如圖1所示的學(xué)具,用來探究“邊邊角條件是否可確定三角形的形狀”問題,操作學(xué)具時(shí),點(diǎn)Q在軌道槽AM上運(yùn)動(dòng),點(diǎn)P既能在以A為圓心、以8為半徑的半圓軌道槽上運(yùn)動(dòng),也能在軌道槽QN上運(yùn)動(dòng),圖2是操作學(xué)具時(shí),所對應(yīng)某個(gè)位置的圖形的示意圖.
有以下結(jié)論:
①當(dāng)∠PAQ=30°,PQ=6時(shí),可得到形狀唯一確定的△PAQ
②當(dāng)∠PAQ=30°,PQ=9時(shí),可得到形狀唯一確定的△PAQ
③當(dāng)∠PAQ=90°,PQ=10時(shí),可得到形狀唯一確定的△PAQ
④當(dāng)∠PAQ=150°,PQ=12時(shí),可得到形狀唯一確定的△PAQ
其中所有正確結(jié)論的序號是( )
A.②③B.③④C.②③④D.①②③④
【答案】C
【解析】
分別在以上四種情況下以P為圓心,PQ的長度為半徑畫弧,觀察弧與直線AM的交點(diǎn)即為Q點(diǎn),作出后可得答案.
如下圖,當(dāng)∠PAQ=30°,PQ=6時(shí),以P為圓心,PQ的長度為半徑畫弧,弧與直線AM有兩個(gè)交點(diǎn),作出,發(fā)現(xiàn)兩個(gè)位置的Q都符合題意,所以
不唯一,所以①錯(cuò)誤.
如下圖,當(dāng)∠PAQ=30°,PQ=9時(shí),以P為圓心,PQ的長度為半徑畫弧,弧與直線AM有兩個(gè)交點(diǎn),作出,發(fā)現(xiàn)左邊位置的Q不符合題意,所以
唯一,所以②正確.
如下圖,當(dāng)∠PAQ=90°,PQ=10時(shí),以P為圓心,PQ的長度為半徑畫弧,弧與直線AM有兩個(gè)交點(diǎn),作出,發(fā)現(xiàn)兩個(gè)位置的Q都符合題意,但是此時(shí)兩個(gè)三角形全等,所以形狀相同,所以
唯一,所以③正確.
如下圖,當(dāng)∠PAQ=150°,PQ=12時(shí),以P為圓心,PQ的長度為半徑畫弧,弧與直線AM有兩個(gè)交點(diǎn),作出,發(fā)現(xiàn)左邊位置的Q不符合題意,所以
唯一,所以④正確.
綜上:②③④正確.
故選C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形OBCD中的三個(gè)頂點(diǎn)在⊙O上,點(diǎn)A是⊙O上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)B、C、D重合)。若四邊形OBCD是平行四邊形時(shí),那么的數(shù)量關(guān)系是________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】等腰△ABC中,AB=AC,∠A=36°,D是AC上的一點(diǎn),AD=BD,則以下結(jié)論中正確的有( 。
①△BCD是等腰三角形;②點(diǎn)D是線段AC的黃金分割點(diǎn);③△BCD∽△ABC;④BD平分∠ABC.
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,、
分別平分四邊形
的外角
和
,設(shè)
,
.
(1)若,則
;
(2)若與
相交于點(diǎn)
,且
,求
、
所滿足的等量關(guān)系式,并說明理由;
(3)如圖②,若,試判斷
、
的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與y軸的交點(diǎn)為A,直線
與直線
的交點(diǎn)M的坐標(biāo)為
.
(1)求a和k的值;
(2)直接寫出關(guān)于x的不等式的解集;
(3)若點(diǎn)B在x軸上,,直接寫出點(diǎn)B的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在等腰直角三角形中,
,點(diǎn)
在
邊上,連接
,連接
(1)求證:
(2)點(diǎn)關(guān)于直線
的對稱點(diǎn)為
,連接
①補(bǔ)全圖形并證明
②利用備用圖進(jìn)行畫圖、試驗(yàn)、探究,找出當(dāng)三點(diǎn)恰好共線時(shí)點(diǎn)
的位置,請直接寫出此時(shí)
的度數(shù),并畫出相應(yīng)的圖形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC 中,AE、BF 是角平分線,交于 O 點(diǎn).
(1)如圖 1,AD 是高,∠BAC=90°,∠C=70°,求∠DAC 和∠BOA 的度數(shù);
(2)如圖 2,若 OE=OF,求∠C 的度數(shù);
(3)如圖 3,若∠C=90°,BC=8,AC=6,S△CEF=4,求 S△AOB.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com