日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖1,在等腰直角三角形中,,邊上,連接,連接

          1)求證:

          2)點關于直線的對稱點為,連接

          ①補全圖形并證明

          ②利用備用圖進行畫圖、試驗、探究,找出當三點恰好共線時點的位置,請直接寫出此時的度數(shù),并畫出相應的圖形

          【答案】1)證明見解析;(2)①見解析;②畫圖見解析,.

          【解析】

          1)先根據(jù)同角的余角相等推出∠BAD=CAE,再根據(jù)SAS證得△BAD≌△CAE,進而可得結論;

          2)①根據(jù)題意作圖即可補全圖形;利用軸對稱的性質可得ME=AE,CM=CA,然后根據(jù)SSS可推出△CME≌△CAE,再利用全等三角形的性質和(1)題的∠BAD=CAE即可證得結論;

          ②當三點恰好共線時,設AC、DM交于點H,如圖3,由前面兩題的結論和等腰直角三角形的性質可求得∠DCM=135°,然后在AEHDCH中利用三角形的內(nèi)角和可得∠HAE=HDC,進而可得,接著在CDM中利用三角形的內(nèi)角和定理求出∠CMD的度數(shù),再利用①的結論即得答案.

          解:(1)證明:∵AEAD,∴∠DAE=90°,∴∠CAE+DAC=90°,

          ∵∠BAC=90°,∴∠BAD+DAC=90°,

          ∴∠BAD=CAE,

          又∵BA=CA,DA=EA,

          ∴△BAD≌△CAESAS),

          ;

          2)①補全圖形如圖2所示,∵點關于直線的對稱點為,∴ME=AE,CM=CA,

          CE=CE,∴△CME≌△CAESSS),

          ∵∠BAD=CAE,

          ;

          ②當三點恰好共線時,設ACDM交于點H,如圖3,由(1)題知:,

          ∵△CME≌△CAE,∴,∴∠DCM=135°,

          AEHDCH中,∵∠AEH=ACD=45°,∠AHE=DHC,∴∠HAE=HDC,

          ,∴,

          ,

          .

          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          【題目】(1)已知⊙O的直徑為10cm,點A為⊙O外一定點,OA=12cm,點P為⊙O上一動點,求PA的最大值和最小值.

          (2)如圖:=,D、E分別是半徑OAOB的中點.求證:CD=CE.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】已知函數(shù)y=x-5,令x= ,1, ,2, ,3,,4,,5,可得函數(shù)圖象上的十個點.在這十個點中隨機取兩個點P(x1,y1),Q(x2,y2),則P,Q兩點在同一反比例函數(shù)圖象上的概率是( )

          A. B. C. D.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】程老師制作了如圖1所示的學具,用來探究邊邊角條件是否可確定三角形的形狀問題,操作學具時,點Q在軌道槽AM上運動,點P既能在以A為圓心、以8為半徑的半圓軌道槽上運動,也能在軌道槽QN上運動,圖2是操作學具時,所對應某個位置的圖形的示意圖.

          有以下結論:

          ①當∠PAQ=30°PQ=6時,可得到形狀唯一確定的△PAQ

          ②當∠PAQ=30°PQ=9時,可得到形狀唯一確定的△PAQ

          ③當∠PAQ=90°PQ=10時,可得到形狀唯一確定的△PAQ

          ④當∠PAQ=150°,PQ=12時,可得到形狀唯一確定的△PAQ

          其中所有正確結論的序號是( )

          A.②③B.③④C.②③④D.①②③④

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】(問題情境)

          如圖,在正方形ABCD中,點E是線段BG上的動點,AEEF,EF交正方形外角∠DCG的平分線CF于點F.

          (探究展示)

          (1)如圖1,若點EBC的中點,證明:∠BAE+EFC=DCF.

          (2)如圖2,若點EBC的上的任意一點(B、C除外),∠BAE+EFC=DCF是否仍然成立?若成立,請予以證明;若不成立,請說明理由.

          (拓展延伸)

          (3)如圖3,若點EBC延長線(C除外)上的任意一點,求證:AE=EF.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】已知一拋物線與x軸的交點是A(﹣2,0),B(1,0),且經(jīng)過點C(2,8).

          (1)求該拋物線的解析式,并寫出頂點坐標.

          (2)直接寫出當y>8時,x的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,ABD,AEC 都是等邊三角形

          1)求證:BEDC .

          2)設 BE、DC 交于 M,連 AM,求的值.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在平面直角坐標系中,AOB是直角三角形,AOB=90°,邊AB與y軸交于點C.

          (1)A=AOC,試說明:B=BOC;

          (2)延長AB交x軸于點E,過O作ODAB,若DOB=EOB,A=E,求A的度數(shù);

          (3)如圖,OF平分AOM,BCO的平分線交FO的延長線于點P,A=40°,當ABO繞O點旋轉時(邊AB與y軸正半軸始終相交于點C),問P的度數(shù)是否發(fā)生改變?若不變,求其度數(shù);若改變,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】某工廠擬建一座平面圖形為矩形且面積為200平方米的三級污水處理池(平面圖如圖ABCD所示).由于地形限制,三級污水處理池的長、寬都不能超過16米.如果池的外圍墻建造單價為每米400元,中間兩條隔墻建造單價為每米300元,池底建造單價為每平方米80元.(池墻的厚度忽略不計)當三級污水處理池的總造價為47200元時,求池長x.

          查看答案和解析>>

          同步練習冊答案