【題目】如圖,△ABC與△A′B′C′是以點(diǎn)O為位似中心的位似圖形,它們的頂點(diǎn)都在正方形網(wǎng)格的格點(diǎn)上.
(1)畫(huà)出位似中心O;
(2)△ABC與△A′B′C′的相似比為_(kāi)_________,面積比為_(kāi)_________.
【答案】(1)作圖見(jiàn)解析;(2)2∶1;4∶1.
【解析】(1)根據(jù)位似的性質(zhì),延長(zhǎng)AA′、BB′、CC′,則它們的交點(diǎn)即為位似中心O;
(2)根據(jù)位似的性質(zhì)得到AB:A′B′=OA:OA′=2:1,則△ABC與△A′B′C′的相似比為2:1,然后根據(jù)相似三角形的性質(zhì)得到它們面積的比.
解:(1)如圖,點(diǎn)O為位似中心;
(2)因?yàn)?/span>AB:A′B′=OA:OA′=12:6=2:1,
所以△ABC與△A′B′C′的相似比為2:1,面積比為4:1.
故答案為2:1; 4:1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在下列條件中,不能確定ABC 是直角三角形的條件是( )
A.A B=
CB.A 2B 3C
C.A B CD.A 2B 2C
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:△ABC在直角坐標(biāo)平面內(nèi),三個(gè)頂點(diǎn)的坐標(biāo)分別為A(0,3)、B(3,4)、C(2,2)(正方形網(wǎng)格中每個(gè)小正方形的邊長(zhǎng)是一個(gè)單位長(zhǎng)度).
(1)以點(diǎn)B為位似中心,在網(wǎng)格內(nèi)畫(huà)出△A1B1C1,使△A1B1C1與△ABC位似,且位似比為2:1.
(2)點(diǎn)C1的坐標(biāo)為( , ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,D為⊙O上一點(diǎn),點(diǎn)C在直徑BA的延長(zhǎng)線(xiàn)上,且∠CDA=∠CBD.
(1)求證:CD是⊙O的切線(xiàn);
(2)過(guò)點(diǎn)B作⊙O的切線(xiàn)交CD的延長(zhǎng)線(xiàn)于點(diǎn)E,CD=2.
①若∠C=30°,求圖中陰影部分的面積;
②若,求BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線(xiàn)y=x2+bx+c經(jīng)過(guò)△ABC的三個(gè)頂點(diǎn),其中點(diǎn)A(0,1),點(diǎn)B(﹣9,10),AC∥x軸,點(diǎn)P是直線(xiàn)AC下方拋物線(xiàn)上的動(dòng)點(diǎn).
(1)求拋物線(xiàn)的解析式;(2)過(guò)點(diǎn)P且與y軸平行的直線(xiàn)l與直線(xiàn)AB、AC分別交于點(diǎn)E、F,當(dāng)四邊形AECP的面積最大時(shí),求點(diǎn)P的坐標(biāo);
(3)當(dāng)點(diǎn)P為拋物線(xiàn)的頂點(diǎn)時(shí),在直線(xiàn)AC上是否存在點(diǎn)Q,使得以C、P、Q為頂點(diǎn)的三角形與△ABC相似,若存在,求出點(diǎn)Q的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明某天上午9時(shí)騎自行車(chē)離開(kāi)家,15時(shí)回家,他離家的距離與時(shí)間的變化情況如圖所示.
(1)10時(shí)時(shí)他離家 ,他到達(dá)離家最遠(yuǎn)的地方時(shí)是 時(shí),此時(shí)離家
;
(2)他可能在哪段時(shí)間內(nèi)休息,并吃午餐?
(3)他在出行途中,哪段時(shí)間內(nèi)騎車(chē)速度最快,速度是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在△ABC中,AD平分∠BAC,AD⊥BC,垂足為D,AN是△ABC外角∠CAM的平分線(xiàn),CE⊥AN,垂足為E.
(1)求證:四邊形ADCE是矩形;
(2)當(dāng)△ABC滿(mǎn)足什么條件時(shí),四邊形ADCE是正方形?給出證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線(xiàn)y=﹣x+2與x軸、y軸分別交于A、B兩點(diǎn),直線(xiàn)BC交x軸負(fù)半軸于點(diǎn)C,∠BCA=30°,如圖①.
(1)求直線(xiàn)BC的解析式.
(2)在圖①中,過(guò)點(diǎn)A作x軸的垂線(xiàn)交直線(xiàn)CB于點(diǎn)D,若動(dòng)點(diǎn)M從點(diǎn)A出發(fā),沿射線(xiàn)AB方向以每秒個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),同時(shí),動(dòng)點(diǎn)N從點(diǎn)C出發(fā),沿射線(xiàn)CB方向以每秒2個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),直線(xiàn)MN與直線(xiàn)AD交于點(diǎn)S,如圖②,設(shè)運(yùn)動(dòng)時(shí)間為t秒,當(dāng)△DSN≌△BOC時(shí),求t的值.
(3)若點(diǎn)M是直線(xiàn)AB在第二象限上的一點(diǎn),點(diǎn)N、P分別在直線(xiàn)BC、直線(xiàn)AD上,是否存在以M、B、N、P為頂點(diǎn)的四邊形是菱形.若存在,請(qǐng)直接寫(xiě)出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com