日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>

        1. 寫出一個y隨x增大而增大的一次函數(shù)的解析式:      


           答案不唯一,如y=x 

          【考點】一次函數(shù)的性質(zhì).

          【專題】開放型.

          【分析】根據(jù)一次函數(shù)的性質(zhì)只要使一次項系數(shù)大于0即可.

          【解答】解:例如:y=x,或y=x+2等,答案不唯一.

          【點評】此題比較簡單,考查的是一次函數(shù)y=kx+b(k≠0)的性質(zhì):

          當k>0時,y隨x的增大而增大;

          當k<0時,y隨x的增大而減。

           


          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:


          如圖①是一張矩形紙片ABCD, AB=5, BC=1,在邊AB上取一點M,在邊CD上取一點N,將紙片沿MN折疊,使MB與DN交于點K,得到△MNK,如圖②所示.

             

          (1)若∠1=70°,求∠MKN的度數(shù);

          (2) △MNK的面積能否小于  ?若能,求出此時∠1的度數(shù),若不能說明理由;

          (3)如何折疊能夠使△MNK的面積最大?請你畫圖探究可能出現(xiàn)的情況,求出最大值.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:


          如圖,C、D是線段AB上兩點,且ACBDAB=1,點P是線段CD上一個動點,在AB同側分別作等邊△PAE和等邊△PBF,M為線段EF的中點. 在點P從點C移動到點D時,點M運動的路徑長度為      

           


          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:


          如圖,直線y=﹣x+分別交x軸、y軸于A、B兩點,經(jīng)過點A的直線m⊥x軸,直線l經(jīng)過原點O交線段AB于點C,過點C作OC的垂線,與直線m相交于點P,現(xiàn)將直線l繞O點旋轉,使交點C在線段AB上由點B向點A方向運動.

          (1)填空:A(            )、B(      ,      

          (2)直線DE過點C平行于x軸分別交y軸與直線m于D、E兩點,求證:△ODC≌△CEP;

          (3)若點C的運動速度為每秒單位,運動時間是t秒,設點P的坐標為(,a)

          ①試寫出a關于t的函數(shù)關系式和變量t的取值范圍;

          ②當t為何值時,△PAC為等腰三角形并求出點P的坐標.

           

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:


          化簡:

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:


          函數(shù)中,自變量x的取值范圍是      

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:


          點P(﹣3,5)所在的象限是( 。

          A.第一象限 B.第二象限  C.第三象限 D.第四象限

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:


          把“對頂角相等”改寫成“如果…那么…”的形式是:      

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:


          有下列各數(shù):,3.14,,,﹣,其中無理數(shù)有( 。

          A.4個  B.3個   C.2個  D.1個

          查看答案和解析>>

          同步練習冊答案