日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 某校七年級(jí)數(shù)學(xué)興趣小組對(duì)“三角形內(nèi)角或外角平分線的夾角與第三個(gè)內(nèi)角的數(shù)量關(guān)系”進(jìn)行了探究.

          (1)如圖1,△ABC兩內(nèi)角∠ABC與∠ACB的平分線交于點(diǎn)E.則∠BEC=90°+
          1
          2
          ∠A.
          (閱讀下面證明過(guò)程,并填空.)
          證明:∵BE、CE分別平分∠ABC和∠ACB,
          ∴∠EBC=
          1
          2
          ∠ABC,∠ECB=
          1
          2
          ∠ACB(角平分線的定義)
          ∴∠BEC=180°-(∠EBC+∠ECB)(
          三角形內(nèi)角和定理
          三角形內(nèi)角和定理

          =180°-(
          1
          2
          ∠ABC+
          1
          2
          ∠ACB
          )=180°-
          1
          2
          (∠ABC+∠ACB)
          =180°-
          1
          2
          (180°-∠A)
          =
          180°-90°+
          1
          2
          ∠A
          180°-90°+
          1
          2
          ∠A
          =90°+
          1
          2
          ∠A

          (2)如圖2,△ABC的內(nèi)角∠ABC的平分線與△ABC的外角∠ACM的平分線交于點(diǎn)E.
          請(qǐng)你寫(xiě)出∠BEC與∠A的數(shù)量關(guān)系,并證明.
          答:∠BEC與∠A的數(shù)量關(guān)系式:
          ∠BEC=
          1
          2
          ∠A
          ∠BEC=
          1
          2
          ∠A

          證明:
          如下
          如下

          (3)如圖3,△ABC的兩外角∠CBD與∠BCF的平分線交于點(diǎn)E,請(qǐng)你直接寫(xiě)出∠BEC與∠A的數(shù)量關(guān)系,不需證明.
          分析:(1)根據(jù)題目解答過(guò)程填寫(xiě)即可;
          (2)根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和,用∠A與∠1表示出∠2,再利用∠E與∠1表示出∠2,然后整理即可得到∠BEC與∠E的關(guān)系;
          (3)根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和以及角平分線的定義表示出∠EBC與∠ECB,然后再根據(jù)三角形的內(nèi)角和定理列式整理即可得解.
          解答:(1)證明:∵BE、CE分別平分∠ABC和∠ACB,
          ∴∠EBC=
          1
          2
          ∠ABC,∠ECB=
          1
          2
          ∠ACB(角平分線的定義)
          ∴∠BEC=180°-(∠EBC+∠ECB)( 三角形內(nèi)角和定理)
          =180°-(
          1
          2
          ∠ABC+
          1
          2
          ∠ACB
          ),
          =180°-
          1
          2
          (∠ABC+∠ACB),
          =180°-
          1
          2
          (180°-∠A),
          =180°-90°+
          1
          2
          ∠A,
          =90°+
          1
          2
          ∠A
          ;

          (2)探究2結(jié)論:∠BEC=
          1
          2
          ∠A,
          理由如下:
          ∵BE和CE分別是∠ABC和∠ACM的角平分線,
          ∴∠1=
          1
          2
          ∠ABC,∠2=
          1
          2
          ∠ACM,
          又∵∠ACM是△ABC的一外角,
          ∴∠ACM=∠A+∠ABC,
          ∴∠2=
          1
          2
          (∠A+∠ABC)=
          1
          2
          ∠A+∠1,
          ∵∠2是△BEC的一外角,
          ∴∠BEC=∠2-∠1=
          1
          2
          ∠A+∠1-∠1=
          1
          2
          ∠A;

          (3)探究3:∠EBC=
          1
          2
          (∠A+∠ACB),∠ECB=
          1
          2
          (∠A+∠ABC),
          ∠BEC=180°-∠EBC-∠ECB,
          =180°-
          1
          2
          (∠A+∠ACB)-
          1
          2
          (∠A+∠ABC),
          =180°-
          1
          2
          ∠A-
          1
          2
          (∠A+∠ABC+∠ACB),
          結(jié)論∠BEC=90°-
          1
          2
          ∠A.
          點(diǎn)評(píng):本題考查了三角形的外角性質(zhì)與內(nèi)角和定理,熟記三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和是解題的關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (2011•巴中)某校初三年級(jí)“數(shù)學(xué)興趣小組”實(shí)地測(cè)量操場(chǎng)旗桿的高度.旗桿的影子落在操場(chǎng)和操場(chǎng)邊的土坡上,如圖所示,測(cè)得在操場(chǎng)上的影長(zhǎng)BC=20m,斜坡上的影長(zhǎng)CD=8m,已知斜坡CD與操場(chǎng)平面的夾角為30°,同時(shí)測(cè)得身高l.65m的學(xué)生在操場(chǎng) 上的影長(zhǎng)為3.3m.求旗桿AB的高度.(結(jié)果精確到1m)
          (提示:同一時(shí)刻物高與影長(zhǎng)成正比.參考數(shù)據(jù):
          2
          ≈1.414.
          3
          ≈1.732.
          5
          ≈2.236)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          秋高氣爽,菊花芬芳,艷陽(yáng)高照,群情昂揚(yáng).某校八年級(jí)數(shù)學(xué)興趣小組運(yùn)用相似三角形的有關(guān)知識(shí),并用兩種方法測(cè)量學(xué)校操場(chǎng)南側(cè)旗桿AB的高度.
          (1)如圖①,小麗同學(xué)站在旗桿頂端A在地面上的影子C處,此時(shí)小麗同學(xué)頭頂D在地面上的影子E處.若小麗同學(xué)身高(CD)1.65m,小麗同學(xué)的影長(zhǎng)CE=1.1m,旗桿的影長(zhǎng)BC=12m.利用得到的數(shù)據(jù),請(qǐng)你幫助數(shù)學(xué)興趣小組求出旗桿AB的高度;
          (2)如圖②,小亮同學(xué)在旗桿AB與他之間的地面上平放一面小鏡子,在鏡子的C處做上一個(gè)標(biāo)記,BC=15m,小亮同學(xué)看著鏡子前后移動(dòng),直到看到旗桿頂端A在鏡子中的像與鏡子上的標(biāo)記C重合,停止移動(dòng).此時(shí)小亮同學(xué)站在E處,CE=1.4m,眼睛D觀察鏡子時(shí)距離地面的高度DE=1.68m.利用得到的數(shù)據(jù),請(qǐng)你幫助數(shù)學(xué)興趣小組求出旗桿AB的高度.(友情提示:將兩圖中的人物看作垂直地面的線段,不用再畫(huà)線作圖)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          某校七年級(jí)數(shù)學(xué)學(xué)習(xí)小組在探究學(xué)習(xí)過(guò)程中,將一副直角三角板的直角頂點(diǎn)C疊放在一起按如圖(1)位置放置.
          (1)判斷∠ACE與∠BCD的大小關(guān)系,并說(shuō)明理由;
          (2)現(xiàn)保持直角△BCE不動(dòng),將直角△ACD繞C點(diǎn)旋轉(zhuǎn)一個(gè)角度,使得AC∥BE,如圖(2).
          ①直線CD與BE的位置關(guān)系是:
           
          ;
          ②求證:CD平分∠BCE.
          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

          某校七年級(jí)數(shù)學(xué)興趣小組對(duì)“三角形內(nèi)角或外角平分線的夾角與第三個(gè)內(nèi)角的數(shù)量關(guān)系”進(jìn)行了探究.

          (1)如圖1,△ABC兩內(nèi)角∠ABC與∠ACB的平分線交于點(diǎn)E.則∠BEC=90°+數(shù)學(xué)公式∠A.
          (閱讀下面證明過(guò)程,并填空.)
          證明:∵BE、CE分別平分∠ABC和∠ACB,
          ∴∠EBC=數(shù)學(xué)公式∠ABC,∠ECB=數(shù)學(xué)公式∠ACB(角平分線的定義)
          ∴∠BEC=180°-(∠EBC+∠ECB)(______)
          =180°-(數(shù)學(xué)公式)=180°-數(shù)學(xué)公式(∠ABC+∠ACB)
          =180°-數(shù)學(xué)公式(180°-∠A)
          =______=90°+數(shù)學(xué)公式
          (2)如圖2,△ABC的內(nèi)角∠ABC的平分線與△ABC的外角∠ACM的平分線交于點(diǎn)E.
          請(qǐng)你寫(xiě)出∠BEC與∠A的數(shù)量關(guān)系,并證明.
          答:∠BEC與∠A的數(shù)量關(guān)系式:______.
          證明:______.
          (3)如圖3,△ABC的兩外角∠CBD與∠BCF的平分線交于點(diǎn)E,請(qǐng)你直接寫(xiě)出∠BEC與∠A的數(shù)量關(guān)系,不需證明.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案