日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在正方形ABCD中,AB6,E為直線AB上一點(diǎn),EFAB交對(duì)角線ACF,點(diǎn)GAF中點(diǎn),連接CE,點(diǎn)MCE中點(diǎn),連接BM并延長(zhǎng)交直線AC于點(diǎn)O

          1)如圖1,E在邊AB上時(shí),   ,∠GBM   ;

          2)將(1)中AEFA逆時(shí)針旋轉(zhuǎn)任意一銳角,其他條件不變,如圖2,(1)中結(jié)論是否任然成立?請(qǐng)加以證明.

          3)若BE2,則CO長(zhǎng)為   

          【答案】(1),45°;(2)成立,理由見(jiàn)解析;(33

          【解析】

          1)連結(jié)EG、GM.想辦法證明GBM是等腰直角三角形即可解決問(wèn)題.
          2)成立.延長(zhǎng)GMH,使得MH=GM,連接BH,HC,延長(zhǎng)HCAF的延長(zhǎng)線于I,設(shè)AICDJ.利用全等三角形的性質(zhì)證明GBM是等腰直角三角形即可解決問(wèn)題.
          3)分兩種情形①點(diǎn)E在線段AB上.②點(diǎn)EAB的延長(zhǎng)線上,分別求解即可解決問(wèn)題.

          解:(1)連結(jié)EG、GM

          ∵四邊形ABCD是正方形,

          ∴∠ABC90°,∠CAB=∠ACB45°

          EFAB,

          ∴∠AEF90°,

          ∴∠EAF=∠EFA45°,

          AGGF

          EGAF,

          ∴∠EGC90°

          EMMC

          GMBMCE,

          ∴∠MCG=∠MGC,∠MBC=∠MCB,

          ∴∠BMG=∠BME+GME2BMC+2GCM2ACB90°

          GMB為等腰直角三角形.

          故答案為,45°

          2)成立.

          理由:延長(zhǎng)GMH,使得MHGM,連接BH,HC,延長(zhǎng)HCAF的延長(zhǎng)線于I,設(shè)AICDJ

          EMMCGMMH,∠EMG=∠HMC

          ∴△EMG≌△CMHSAS),

          EGCH,∠EGM=∠MHC,

          ECCH

          ∴∠AGE=∠AIH90°,

          AGEG,

          AGCH

          ∵∠D=∠I90°,∠AJD=∠CJI,

          ∴∠ICD=∠IAD

          ∵∠BAG+IAD90°,∠BCH+ICF90°

          ∴∠BCH=∠BAG,

          BABC

          ∴△BAG≌△BCHSAS),

          BGDH,∠ABG=∠CBH,

          ∴∠∠GBH=∠ABC90°

          GBH是等腰直角三角形,

          ,∠GBM45°

          3)當(dāng)EB上方時(shí),如圖31中,延長(zhǎng)BOCDT

          BECT,

          ∴∠MEB=∠MCT,

          ∵∠EMB=∠CMT,EMCM

          ∴△EMB≌△CMTASA),

          BECT2

          CTAB,


          AC=6,
          OC=×6
          CO=
          當(dāng)EB下方時(shí)同法可得CO=3
          綜上所述,OC的長(zhǎng)為3
          故答案為3

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】函數(shù)y=ax+by=bx+a的圖象在同一坐標(biāo)系內(nèi)的大致位置正確的是(  )

          A.B.

          C.D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】用如圖所示的卡片拼成一個(gè)長(zhǎng)為(2a+3b),寬為(a+b)的長(zhǎng)方形,則需要(1)型卡片、(2)型卡片和(3)型卡片的張數(shù)分別是(

          A. 2,5,3B. 2,35C. 3,5,2D. 3,2,5

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】計(jì)算下列各題

          1)(x32.(﹣x43

          2)(x5y4x4y3x3y3

          3)(2a+12﹣(2a+1)(2a1

          4102+×π3.140|302|

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】平面直角坐標(biāo)系中,已知點(diǎn)A010),點(diǎn)Pm,10),連接AP、OP,將AOP沿直線OP翻折得到EOP(點(diǎn)A的對(duì)應(yīng)點(diǎn)為點(diǎn)E).若點(diǎn)Ex軸的距離不大于6,則m的取值范圍是_____

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,直線y=x+4y軸于點(diǎn)A,與直線BC相交于點(diǎn)B-2m),直線BCy軸交于點(diǎn)C0,-2),與x軸交于點(diǎn)D

          1)求點(diǎn)B坐標(biāo);

          2)求ABC的面積

          3)過(guò)點(diǎn)ABC的平行線交x軸于點(diǎn)E,求點(diǎn)E的坐標(biāo);

          4)在(3)的條件下,點(diǎn)p是直線AB上一動(dòng)點(diǎn)且在x軸上方,Q為直角坐標(biāo)平面內(nèi)一點(diǎn),如果以點(diǎn)DE、PQ為頂點(diǎn)的平行四邊形的面積等于ABC面積請(qǐng)求出點(diǎn)P的坐標(biāo).并直接寫(xiě)出點(diǎn)Q的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在△ABC中,AB=AC=26cm,BC=20cm,DAB的中點(diǎn),過(guò)DDEACE,則DE的長(zhǎng)為____

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在Rt△ABC中,∠ACB=90°,D、E分別為AB,AC邊上的中點(diǎn),連接DE,將△ADE繞點(diǎn)E旋轉(zhuǎn)180°得到△CFE,連接AF,AC

          1)求證:四邊形ADCF是菱形;

          2)若BC=8,AC=6,求四邊形ABCF的周長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】 如圖,在平行四邊形ABCD中,EBC邊上一點(diǎn),連結(jié)AE、BDAE=AB

          1)求證:∠ABE=∠EAD;

          2)若∠AEB=2∠ADB,求證:四邊形ABCD是菱形.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案