日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖所示,四邊形ABCD是平行四邊形,E,F(xiàn)分別在AD,CB的延長線上,且DE=BF,連接FE分別交AB,CD于點(diǎn)H,G.
          (1)觀察圖中有幾對(duì)全等三角形,并把它們寫出來;
          (2)請(qǐng)你選擇(1)中的其中一對(duì)全等三角形給予證明.

          【答案】分析:(1)根據(jù)平行四邊形的性質(zhì)可推出相等的角、邊,再結(jié)合DE=BF,尋找全等三角形.
          (2)根據(jù)“AAS”證明△AEH≌△CFG;
          解答:(1)解:全等三角形為:△DEG≌△BFH,△AEH≌△CFG;
          (2)選擇證明△AEH≌△CFG;
          理由:∵ABCD為平行四邊形,
          ∴∠A=∠C,AD=BC,∠AHE=∠CGF
          又∵DE=BF,
          ∴AE=CF,
          ∴△AEH≌△CFG(AAS).
          點(diǎn)評(píng):在證明全等三角形時(shí),要充分運(yùn)用平行四邊形的對(duì)邊平行且相等,對(duì)角相等的性質(zhì).
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          21、如圖所示,四邊形ABCD是平行四邊形,E,F(xiàn)分別在AD,CB的延長線上,且DE=BF,連接FE分別交AB,CD于點(diǎn)H,G.
          (1)觀察圖中有
          2
          對(duì)全等三角形;
          (2)聰明的你如果還有時(shí)間,請(qǐng)?jiān)谏蠄D中連接AF,CE,你將發(fā)現(xiàn)圖中出現(xiàn)了更多的全等三角形.請(qǐng)?jiān)谙旅娴臋M線上再寫出兩對(duì)與(1)不同的全等三角形(不用證明).1
          △EDC≌△FBA
          ,2
          △EAF≌△FCE

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          12、如圖所示,四邊形ABCD為⊙O的內(nèi)接四邊形,E為AB延長線的上一點(diǎn),∠CBE=40°,則∠AOC等于(  )

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖所示,四邊形ABCD中,E、F分別為AD、BC的中點(diǎn).
          (1)當(dāng)AB∥CD而AD與BC不平行時(shí),四邊形ABCD稱為
           
          形,線段EF叫做其
           
          ,EF與AB+CD的數(shù)量關(guān)系為
           
          ;
          (2)當(dāng)AB與CD不平行,AD與BC也不平行時(shí),猜想EF與AB+CD的數(shù)量關(guān)系,并證明你的猜想.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖所示,四邊形ABCD是正方形,E、F是AB、BC的中點(diǎn),連接EC交DB、DF于G、H,則EG:GH:HC=
           
          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:新課標(biāo) 讀想練同步測試 七年級(jí)數(shù)學(xué)(下) 北師大版 題型:044

          如圖所示,四邊形AB-CD中,AB∥CD,P為BC上一點(diǎn),設(shè)∠CDP=α,∠CPD=β,試說明,無論點(diǎn)P在BC上如何移動(dòng),總有α+β=∠B.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案