日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,正方形ABCD中,AB6,EAB邊上一點(diǎn),FBC延長(zhǎng)線上一點(diǎn),將△BEF沿EF翻折,使點(diǎn)B恰好落在AD邊上的點(diǎn)G處,FGCD交于點(diǎn)H,連接BH,與EF交于點(diǎn)M,若BH平分∠CHG,AG4,則EM_____

          【答案】

          【解析】

          由正方形的性質(zhì)得出AB=BC,∠A=ABC=BCD=90°,過(guò)點(diǎn)BBPFGP,連接BG,交EFN,由翻折的性質(zhì)得BE=GE,設(shè)AE=x,則BE=GE=6-x,在RtAEG中,AE2+AG2=GE2,即x2+42=6-x2,求出x=,則BE=GE=,,由AAS證得BCH≌△BPH得出∠CBH=PBH,BC=BP,推出AB=BP,由HL證得RtABGRtPBG得出∠ABG=PBG,推出∠NBM=PBG+PBH=(∠ABP+CBP=45°,由翻折的性質(zhì)得出EF垂直平分BG,則BN=NG=BG=BNM是等腰直角三角形,推出MN=BN=,,即可得出結(jié)果.

          ∵四邊形ABCD是正方形,

          AB=BC,∠A=ABC=BCD=90°,

          過(guò)點(diǎn)BBPFGP,連接BG,交EFN,如圖所示:

          由翻折的性質(zhì)得:BE=GE,

          設(shè)AE=x,則BE=GE=6-x

          RtAEG中,AE2+AG2=GE2,

          即:x2+42=6-x2,

          解得:x=,

          BE=GE=

          ,

          BH平分∠CHG

          ∴∠CHB=PHB,

          BCHBPH中,

          ,

          ∴△BCH≌△BPHAAS),

          ∴∠CBH=PBH,BC=BP

          AB=BP,

          RtABGRtPBG中,

          ,

          RtABGRtPBGHL),

          ∴∠ABG=PBG

          ∴∠NBM=PBG+PBH=(∠ABP+CBP=×90°=45°

          由翻折的性質(zhì)得:EF垂直平分BG,

          BN=NG=BG=BNM是等腰直角三角形,

          MN=BN=,

          ,

          ,

          故答案為:

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】1)問(wèn)題發(fā)現(xiàn):如圖(1).在中,繞點(diǎn)逆時(shí)針旋轉(zhuǎn).邊的中點(diǎn),當(dāng)點(diǎn)與點(diǎn)重合時(shí).的位置關(guān)系為 ,的數(shù)量關(guān)系為

          2)問(wèn)題證明:在繞點(diǎn)逆時(shí)針旋轉(zhuǎn)的過(guò)程中,(1)中的結(jié)論是否仍然成立,若成立,請(qǐng)僅就圖2的情形給出證明,若不成立,請(qǐng)說(shuō)明理山,

          3)拓展應(yīng)用:在繞點(diǎn)逆時(shí)針旋轉(zhuǎn)旋轉(zhuǎn)的過(guò)程中,當(dāng)時(shí),直接寫(xiě)出的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在平面直角坐標(biāo)系中,當(dāng)滿足為常數(shù),且,)時(shí),就稱點(diǎn)等積點(diǎn).若直線)與軸、軸分別交于點(diǎn)和點(diǎn),并且該直線上有且只有一個(gè)等積點(diǎn),過(guò)點(diǎn)軸平行的直線和過(guò)點(diǎn)軸平行的直線交于點(diǎn),點(diǎn)是直線上的等積點(diǎn),點(diǎn)是直線上的等積點(diǎn),若的面積為,則______

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,ABO直徑,點(diǎn)CO上,AD平分∠CAB,BDO的切線,ADBC相交于點(diǎn)E,與O相交于點(diǎn)F,連接BF

          1)求證:BDBE

          2)若DE2,BD2,求AE的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】“大潤(rùn)發(fā)”、“世紀(jì)聯(lián)華”兩家超市出售同樣的洗衣液和香皂,洗衣液和香皂在兩家超市的售價(jià)分別一樣.已知買(mǎi)1袋洗衣液和2塊香皂要花費(fèi)48元,買(mǎi)3袋洗衣液和4塊香皂要花費(fèi)134元.

          1)一袋洗衣液與一塊香皂售價(jià)各是多少元?(列方程組求解)

          2)為了迎接“五一勞動(dòng)節(jié)”,兩家超市都在搞促銷(xiāo)活動(dòng),“大潤(rùn)發(fā)”超市規(guī)定:這兩種商品都打八五折;“世紀(jì)聯(lián)華”超市規(guī)定:買(mǎi)一袋洗衣液贈(zèng)送一塊香皂.若媽媽想要買(mǎi)4袋洗衣液和10塊香皂,又只能在一家超市購(gòu)買(mǎi),你覺(jué)得選擇哪家超市購(gòu)買(mǎi)更合算?請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在矩形ABCD中,AB3BC4,將矩形ABCD繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)α角,得到矩形A'B'CD',B'CAD交于點(diǎn)E,AD的延長(zhǎng)線與A′D′交于點(diǎn)F

          1)如圖1,當(dāng)a60°時(shí),連接DD',求DD'A'F的長(zhǎng);

          2)如圖2,當(dāng)矩形A′B′CD′的頂點(diǎn)A'落在CD的延長(zhǎng)線上時(shí),求EF的長(zhǎng);

          3)如圖3,當(dāng)AEEF時(shí),連接AC,CF,求證:∠ACF90°

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知,如圖,拋物線經(jīng)過(guò)直線與坐標(biāo)軸的兩個(gè)交點(diǎn).此拋物線與軸的另一個(gè)交點(diǎn)為.拋物線的頂點(diǎn)為

          求此拋物線的解析式;

          若點(diǎn)為拋物線上一動(dòng)點(diǎn),是否存在點(diǎn).使的面積相等?若存在,求點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知關(guān)于x的方程x2-4mx+4m2-9=0

          (1)求證:此方程有兩個(gè)不等的實(shí)數(shù)根;

          (2)若方程的兩個(gè)根分別為x1,x2,其中x1>x2,若x1=3x2,求m的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,直線ABy軸交于點(diǎn),與反比例函數(shù)在第二象限內(nèi)的圖象相交于點(diǎn)

          1)求直線AB的解析式;

          2)將直線AB向下平移9個(gè)單位后與反比例函數(shù)的圖象交于點(diǎn)C和點(diǎn)E,與y軸交于點(diǎn)D,求的面積;

          3)設(shè)直線CD的解析式為,根據(jù)圖象直接寫(xiě)出不等式的解集.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案