日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 17.某公路收費站的收費標(biāo)準(zhǔn)是:大客車20元,貨車10元,轎車5元,某天通過該收費站的三種車輛的數(shù)量之比是3:5:4,共收費6.5萬元,試問這天通過收費站的三種車輛各是多少輛?

          分析 設(shè)這天通過收費站的大客車3x輛,貨車5x輛,轎車4x輛,根據(jù)“大客車20元,貨車10元,轎車5元,共收費6.5萬元”列出方程并解答.

          解答 解:設(shè)這天通過收費站的大客車3x輛,貨車5x輛,轎車4x輛,
          依題意得:20×3x+10×5x+5×4x=65000,
          解得x=500,
          則3x=1500(輛),5x=2500(輛),4x=200(輛).
          答:這天通過收費站的大客車1500輛,貨車2500輛,轎車200輛.

          點評 本題考查了一元一次方程的應(yīng)用.解題的關(guān)鍵是找到題中的等量關(guān)系列出方程.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          2.在平面直角坐標(biāo)系中,點A的坐標(biāo)為(3,3),點B的坐標(biāo)為(1,2).
          (1)線段AB的長度為$\sqrt{5}$,并以A為圓心,線段AB的長度為半徑作⊙A;
          (2)作出⊙A關(guān)于點O的對稱圖形⊙A’,并寫出圓心的坐標(biāo)(-3,-3);
          (3)過點O作直線m,并滿足直線m與⊙A相交,將⊙A和⊙A’位于直線m下方的圖形面積記為S,請直接寫出S的值為5π.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          8.如圖,在單位長度為1的正方形網(wǎng)格中建立平面直角坐標(biāo)系,一段圓弧經(jīng)過網(wǎng)格的交點為A(-4,4),B(0,4),C(2,2).
          (1)在圖中標(biāo)出該圓弧所在圓的圓心D,并連接AD,CD.
          (2)在(1)的基礎(chǔ)上.完成下列填空:
          ①⊙D的半徑是2$\sqrt{5}$;
          ②弧$\widehat{AC}$的長為2$\sqrt{5}$π
          ③若把橫縱坐標(biāo)都是整數(shù)的點稱為整點,則此段圓弧所在的圓一共會經(jīng)過3個整點.
          (3)在y軸上能否找到一點E,使直線AE與⊙D相切;若能,求出點E坐標(biāo);若不能,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:選擇題

          5.如果方程6x+3a=22與方程3x+5=11的解互為相反數(shù),那么a=( 。
          A.-$\frac{34}{3}$B.$\frac{10}{3}$C.$\frac{34}{3}$D.-$\frac{10}{3}$

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          12.如圖1,將兩個完全相同的三角形紙片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=α,若固定△ABC,將△DEC繞點C旋轉(zhuǎn).
          (1)當(dāng)△DEC繞點C旋轉(zhuǎn)到點D恰好落在AB邊上時,如圖2,則此時旋轉(zhuǎn)角為2α(用含的式子表示).
          (2)當(dāng)△DEC繞點C旋轉(zhuǎn)到如圖3所示的位置時,小楊同學(xué)猜想:△BDC的面積與△AEC的面積相等,試判斷小楊同學(xué)的猜想是否正確,若正確,請你證明小楊同學(xué)的猜想.若不正確,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          2.如圖,點B、C、D都在半徑為12的⊙O上,過點C作AC∥BD交OB的延長線于點A,連接CD,已知∠CDB=∠OBD=30°.
          (1)求證:AC是⊙O的切線;
          (2)求弦BD的長;
          (3)求圖中陰影部分的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          9.解方程
          (1)2(x+8)=3(x-1)
          (2)4x+3(2x-3)=12-(x+4)
          (3)$\frac{1}{2}$x-6=$\frac{3}{4}$x            
          (4)3x+$\frac{x-1}{2}$=3-$\frac{2x-1}{3}$.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          6.先化簡,再求值:(2x+1)(2x-1)-(x-2)2-3x2,其中x=-$\frac{1}{4}$.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          7.如圖所示,船A和船B同時從小島O出發(fā),船A沿北偏西20°的方向航行,船B沿北偏東70°的方向航行.
          (1)畫出表示船A和船B航行方向的射線;
          (2)求∠AOB的度數(shù).

          查看答案和解析>>

          同步練習(xí)冊答案