日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)如圖,⊙O是△ABC的外接圓,∠BAC=60°,若⊙O的半徑0C為2,則弦BC的長為( 。
          A、1
          B、
          3
          C、2
          D、2
          3
          分析:由圓周角定理得∠BOC=2∠BAC=120°,過O點(diǎn)作OD⊥BC,垂足為D,由垂徑定理可知∠BOD=
          1
          2
          ∠BOC=60°,BC=2BD,解直角三角形求BD即可.
          解答:精英家教網(wǎng)解:過O點(diǎn)作OD⊥BC,垂足為D,
          ∵∠BOC,∠BAC是
          BC
          所對(duì)的圓心角和圓周角,
          ∴∠BOC=2∠BAC=120°,
          ∵OD⊥BC,
          ∴∠BOD=
          1
          2
          ∠BOC=60°,BC=2BD,
          在Rt△BOD中,BD=OB•sin∠BOD=2×
          3
          2
          =
          3

          ∴BC=2BD=2
          3

          故選D.
          點(diǎn)評(píng):本題考查了圓周角定理,垂徑定理,解直角三角形的運(yùn)用.關(guān)鍵是利用圓周角定理,垂徑定理將條件集中在直角三角形中,解直角三角形.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,⊙O是△ABC的外接圓,OD⊥AB于點(diǎn)D、交⊙O于點(diǎn)E,∠C=60°,如果⊙O的半徑為2,那么OD=
           

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          24、如圖,AD是△ABC的高,且AD平分∠BAC,請(qǐng)指出∠B與∠C的關(guān)系,并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•雅安)如圖,DE是△ABC的中位線,延長DE至F使EF=DE,連接CF,則S△CEF:S四邊形BCED的值為( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•黔東南州)如圖,⊙O是△ABC的外接圓,圓心O在AB上,過點(diǎn)B作⊙O的切線交AC的延長線于點(diǎn)D.
          (1)求證:△ABC∽△BDC.
          (2)若AC=8,BC=6,求△BDC的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,BD是∠ABC的平分線,DE⊥AB于E,S△ABC=90,AB=18,BC=12,求DE的長.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案