日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)如圖,⊙O是△ABC的外接圓,OD⊥AB于點D、交⊙O于點E,∠C=60°,如果⊙O的半徑為2,那么OD=
           
          分析:連接OA、OB.構(gòu)造與圓周角∠AOC同弧的圓心角∠AOB、直角三角形AOD.利用圓周角定理(同弧所對的圓周角是所對的圓心角的一半)求得∠AOB=2∠C=120°;然后根據(jù)垂徑定理(垂直于弦的直徑平分這條弦,并且平分這條弦所對的兩條。┣蟮肁D=BD,即OD是等腰三角形的底邊AB上的高,然后在直角三角形AOD中由30°所對的直角邊是斜邊的一半,解得OD的值.
          解答:精英家教網(wǎng)解:連接OA、OB.
          ∵∠C=60°,
          ∴∠AOB=2∠C=120°(同弧所對的圓周角是所對的圓心角的一半);
          ∵OD⊥AB,
          ∴AD=BD(垂徑定理);
          又∵OA=OB,
          ∴∠AOD=∠BOD=60°;
          在直角三角形AOD中,OD=
          1
          2
          OA(30°所對的直角邊是斜邊的一半),
          ∵⊙O的半徑為2,
          ∴OA=2,
          ∴OD=1.
          故答案為:1.
          點評:本題綜合考查了垂徑定理、圓周角定理、含30°角的直角三角形.解題時,通過添加輔助線OA、OB,將條件中隱含的圓周角定理充分揭示出來,以便取得過渡性的推論,達到推導(dǎo)出結(jié)論的目的.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          24、如圖,AD是△ABC的高,且AD平分∠BAC,請指出∠B與∠C的關(guān)系,并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•雅安)如圖,DE是△ABC的中位線,延長DE至F使EF=DE,連接CF,則S△CEF:S四邊形BCED的值為( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•黔東南州)如圖,⊙O是△ABC的外接圓,圓心O在AB上,過點B作⊙O的切線交AC的延長線于點D.
          (1)求證:△ABC∽△BDC.
          (2)若AC=8,BC=6,求△BDC的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,BD是∠ABC的平分線,DE⊥AB于E,S△ABC=90,AB=18,BC=12,求DE的長.

          查看答案和解析>>

          同步練習(xí)冊答案