日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,BC是⊙O的直徑,點(diǎn)A在⊙O上,AD⊥BC,垂足為D,弧AE等于弧AB,BE分別交AD、AC于點(diǎn)F、G.
          (1)判斷△FAG的形狀,并說(shuō)明理由;
          (2)若點(diǎn)E和點(diǎn)A在BC的兩側(cè),BE、AC的延長(zhǎng)線交于點(diǎn)G,AD的延長(zhǎng)線交BE于點(diǎn)F,其余條件不變,(1)中的結(jié)論還成立嗎?請(qǐng)說(shuō)明理由.

          【答案】
          (1)解:等腰三角形;

          ∵BC為直徑,AD⊥BC,

          ∴∠BAD+∠CAD=90°,∠C+∠CAD=90°,

          ∴∠BAD=∠C,

          ,

          ∴∠ABE=∠C,

          ∴∠ABE=∠BAD,

          ∴AF=BF,

          ∵∠BAD+∠CAD=90°,∠ABE+∠AGB=90°,

          ∴∠DAC=∠AGB,

          ∴FA=FG,

          ∴△FAG是等腰三角形


          (2)解:成立;

          ∵BC為直徑,AD⊥BC,

          ∴∠BAD+∠CAD=90°,∠C+∠CAD=90°,

          ∴∠BAD=∠C,

          ∴∠ABE=∠C,

          ∴∠ABE=∠BAD,

          ∴AF=BF,

          ∵∠BAD+∠CAD=90°,∠ABE+∠AGB=90°,

          ∴∠DAC=∠AGB,

          ∴FA=FG,

          ∴△FAG是等腰三角形


          【解析】(1)首先根據(jù)圓周角定理及垂直的定義得到∠BAD+∠CAD=90°,∠C+∠CAD=90°,從而得到∠BAD=∠C,然后利用等弧對(duì)等角等知識(shí)得到AF=BF,從而證得FA=FG,判定等腰三角形;(2)成立,證明方法同(1).
          【考點(diǎn)精析】利用垂徑定理和圓周角定理對(duì)題目進(jìn)行判斷即可得到答案,需要熟知垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條;頂點(diǎn)在圓心上的角叫做圓心角;頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角;一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】我市某中學(xué)計(jì)劃購(gòu)進(jìn)若干個(gè)甲種規(guī)格的排球和乙種規(guī)格的足球. 如果購(gòu)買20個(gè)甲種規(guī)格的排球和15個(gè)乙種規(guī)格的足球,一共需要花費(fèi)2050元; 如果購(gòu)買10個(gè)甲種規(guī)格的排球和20個(gè)乙種規(guī)格的足球,一共需要花費(fèi)1900元.

          1)求每個(gè)甲種規(guī)格的排球和每個(gè)乙種規(guī)格的足球的價(jià)格分別是多少元?

          2)如果學(xué)校要購(gòu)買甲種規(guī)格的排球和乙種規(guī)格的足球共50個(gè),并且預(yù)算總費(fèi)用不超過(guò)3210元,那么該學(xué)校至多能購(gòu)買多少個(gè)乙種規(guī)格的足球?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,點(diǎn)F在線段AB上,點(diǎn)E、G在線段CD上,ABCD

          1)若BC平分∠ABD,∠D100°,求∠ABC的度數(shù).

          解:∵ABCD(已知),

          ∴∠ABD+D180°,(   

          ∵∠D100°,(已知)

          ∴∠ABD   °,

          BC平分∠ABD,(已知)

          ∴∠ABCABD40°.(角平分線的定義)

          2)若∠1=∠2,求證:AEFG

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】把六張大小形狀完全相同的小平行四邊形卡片(如圖)放在一個(gè)底面為平行四邊形的盒子底部,兩種放置方法如圖2、圖3所示,其中3中的重疊部分是平行四邊形EFGH,若EH2GH,且圖2中陰影部分的周長(zhǎng)比圖3中陰影部分的周長(zhǎng)大3.則ABAD的值為(  )

          A.0.5B.1C.1.5D.3

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知的周長(zhǎng)為28,過(guò)點(diǎn)分別作,交直線于點(diǎn),,交直線于點(diǎn),若,,則的長(zhǎng)為____

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】將一個(gè)直角三角形紙片放置在平面直角坐標(biāo)系中,是坐標(biāo)原點(diǎn),點(diǎn)坐標(biāo)為,點(diǎn)坐標(biāo)為,點(diǎn)是邊上一點(diǎn)(點(diǎn)不與點(diǎn),點(diǎn)重合),沿折疊該紙片,點(diǎn)的對(duì)應(yīng)點(diǎn)為點(diǎn),連接

          1)如圖1,當(dāng)點(diǎn)在第一象限,且時(shí),求點(diǎn)的坐標(biāo);

          2)如圖2,當(dāng)點(diǎn)的中點(diǎn)時(shí);

          ①求證:

          ②直接寫出四邊形的面積;

          3)當(dāng)時(shí),直接寫出點(diǎn)的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖, 圓柱形容器中,高為底面周長(zhǎng)為在容器內(nèi)壁離容器底部的點(diǎn)處有一蚊子,此時(shí)一只壁虎正好在容器外壁,離容器上沿與蚊子相對(duì)的點(diǎn)處,則壁虎捕捉蚊子的最短距離為___(容器厚度忽略不計(jì). )

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】完成下面的解題過(guò)程(在下面的橫線上,填寫相應(yīng)的結(jié)論或推理的依據(jù)):

          已知:ABC,∠A、∠B、∠C之和為多少?為什么?

          解:∠A+B+C=180°

          理由:過(guò)CCD//AB,并延長(zhǎng)BCE

          CD//________(已作)

          ∴∠________=ACD(兩直線平行,內(nèi)錯(cuò)角相等)

          且∠B=___________________________

          而∠DCE+ACD+ACB=_________°

          ∴∠________+B+ACB=180°__________

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,ABCD的對(duì)角線AC、BD相交于點(diǎn)O,點(diǎn)E是CD的中點(diǎn),DOE的周長(zhǎng)為16,BD=12,則ABCD的周長(zhǎng)為_____

          查看答案和解析>>

          同步練習(xí)冊(cè)答案