日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過點C,且AD⊥MN于D,BE⊥MN于E.當直線MN繞點C旋轉(zhuǎn)到圖1的位置時,易證:DE=AD+BE

          (1)如果:當直線MN繞點C旋轉(zhuǎn)到圖2的位置時,那么試問線段DE,AD,BE又分別具有怎樣的數(shù)量關(guān)系?請寫出你的猜想.______.
          (2)如果:當直線MN繞點C旋轉(zhuǎn)到圖3的位置時,那么試問線段DE,AD,BE又分別具有怎樣的數(shù)量關(guān)系?請寫出你的猜想.______.
          (3)請你對上面(1)(2)中的一種情況給予證明.
          【答案】分析:(1)、(2)要在圖2、圖3中尋找線段DE,AD,BE之間的數(shù)量關(guān)系,與圖1一樣,利用三角形全等就解決問題了.
          (3)就其(1)問而言,只需要證明△ADC≌△CEB就可以了,利用AAS或ASA都可以證明.
          解答:解:(1)DE=AD-BE;

          (2)DE=BE-AD;

          (3)證明(1)
          ∵AD⊥MN,BE⊥MN
          ∴∠ADC=∠BEC=90°
          ∴∠2+∠3=90°
          ∵∠1+∠3=90°
          ∴∠1=∠2
          ∵AC=BC
          ∴△ADC≌△CEB
          ∴AD=CE,CD=BE
          ∵DE=CE-CD
          ∴DE=AD-BE.
          點評:本題考查了圖形的旋轉(zhuǎn),等腰直角三角形的性質(zhì),全等三角形的運用等多個知識點,在解決旋轉(zhuǎn)問題的關(guān)鍵是變中求不變.
          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源: 題型:

          在△ABC中,AC=8,BC=6,AB=10,則△ABC的外接圓半徑長為( 。
          A、10B、5C、6D、4

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,在△ABC中,AC=
           

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          17、在△ABC中,AC=5,中線AD=4,那么邊AB的取值范圍為( 。

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖所示,在△ABC中,AC與⊙O相切于點A,AC=AB=2,⊙O交BC于D.
          (1)∠C=
          45
          45
          °;
          (2)BD=
          2
          2
          ;
          (3)求圖中陰影部分的面積(結(jié)果用π表示).

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          (2013•松江區(qū)二模)如圖,已知在△ABC中,AC=15,AB=25,sin∠CAB=
          45
          ,以CA為半徑的⊙C與AB、BC分別交于點D、E,聯(lián)結(jié)AE,DE.
          (1)求BC的長;
          (2)求△AED的面積.

          查看答案和解析>>

          同步練習冊答案