日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在平面直角坐標(biāo)系中,已知RtAOB的兩直角邊OA、OB分別在x軸、y軸的正半軸上(OAOB),且OA、OB的長分別是一元二次方程x2﹣14x+48=0的兩個(gè)根.線段AB的垂直平分線CDAB于點(diǎn)C,交x軸于點(diǎn)D,點(diǎn)P是直線CD上一個(gè)動點(diǎn),點(diǎn)Q是直線AB上一個(gè)動點(diǎn).

          1)求A、B兩點(diǎn)的坐標(biāo);

          2)求直線CD的解析式;

          3)在坐標(biāo)平面內(nèi)是否存在點(diǎn)M,使以點(diǎn)C、P、Q、M為頂點(diǎn)的四邊形是正方形,且該正方形的邊長為AB長?若存在,請直接寫出點(diǎn)M的坐標(biāo);若不存在,請說明理由.

          【答案】1A60),B08);

          2y=x+

          3)存在,M14,11),M2﹣45),M32,﹣3),M4103

          【解析】【試題分析】(1)利用因式分解法解方程x2﹣14x+48=0,求出x的值,即可得到A、B兩點(diǎn)的坐標(biāo);

          2)先在RtAOB中利用勾股定理求出AB==10,根據(jù)線段垂直平分線的性質(zhì)得到AC=AB=5.再由兩角對應(yīng)相等的兩三角形相似證明ACD∽△AOB,由相似三角形對應(yīng)邊成比例得出,求出AD=,得到D點(diǎn)坐標(biāo)(﹣0),根據(jù)中點(diǎn)坐標(biāo)公式得出C3,4),然后利用待定系數(shù)法即可求出直線CD的解析式;

          3)分兩種情況進(jìn)行討論:①當(dāng)點(diǎn)Q與點(diǎn)B重合時(shí),先求出BM的解析式為y=x+8,設(shè)Mx, x+8),再根據(jù)BM=5列出方程(x+882+x2=52,解方程即可求出M的坐標(biāo);②當(dāng)點(diǎn)Q與點(diǎn)A重合時(shí),先求出AM的解析式為y=x,設(shè)Mx, x),再根據(jù)AM=5列出方程(x2+x62=52,解方程即可求出M的坐標(biāo).

          【試題解析】

          1)解方程x2﹣14x+48=0,

          x1=6,x2=8

          OAOB,

          A60),B0,8);

          2)在RtAOB中,∵∠AOB=90°,OA=6OB=8,

          AB==10

          ∵線段AB的垂直平分線CDAB于點(diǎn)C,

          AC=AB=5

          ACDAOB中,

          ,

          ∴△ACD∽△AOB,

          ,即,

          解得AD=

          A6,0),點(diǎn)Dx軸上,

          D,0).

          設(shè)直線CD的解析式為y=kx+b,

          由題意知CAB中點(diǎn),

          C3,4),

          D,0),

          ,解得,

          ∴直線CD的解析式為y=x+;

          3)在坐標(biāo)平面內(nèi)存在點(diǎn)M,使以點(diǎn)C、P、QM為頂點(diǎn)的四邊形是正方形,且該正方形的邊長為AB長.

          AC=BC=AB=5,

          ∴以點(diǎn)C、P、Q、M為頂點(diǎn)的正方形的邊長為5,且點(diǎn)Q與點(diǎn)B或點(diǎn)A重合.分兩種情況:

          當(dāng)點(diǎn)Q與點(diǎn)B重合時(shí),易求BM的解析式為y=x+8,設(shè)Mx, x+8),

          B0,8),BM=5,

          x+882+x2=52,

          化簡整理,得x2=16

          解得x=±4,

          M14,11),M2﹣4,5);

          當(dāng)點(diǎn)Q與點(diǎn)A重合時(shí),易求AM的解析式為y=x,設(shè)Mx, x),

          A6,0),AM=5

          x2+x62=52,

          化簡整理,得x2﹣12x+20=0,

          解得x1=2,x2=10,

          M32,﹣3),M410,3);

          綜上所述,所求點(diǎn)M的坐標(biāo)為M14,11),M2﹣4,5),M32,﹣3),M410,3).

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某移動通訊公司提供了A,B兩種方案的通訊費(fèi)用y(元)與通話時(shí)間x(分)之間的關(guān)系,如圖所示,則以下說法錯誤的是( )

          A. 若通話時(shí)間少于120分,則A方案比B方案便宜20元

          B. 若通話時(shí)間超過200分,則B方案比A方案便宜12元

          C. 若通訊費(fèi)用為60元,則B方案比A方案的通話時(shí)間多

          D. 若兩種方案通訊費(fèi)用相差10元,則通話時(shí)間是145分或185分

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,ABC中,ABAC,以AB為直徑的⊙O分別與BC、AC交于點(diǎn)D、E,過點(diǎn)D作⊙O的切線DF,交AC于點(diǎn)F

          1)求證:DFAC

          2)若⊙O的半徑為4,CDF22.5°,求陰影部分的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,一次函數(shù)ykxb與反比例函數(shù)yx0)交于A2,4),Ba,1),與x軸,y軸分別交于點(diǎn)C,D

          1)直接寫出一次函數(shù)ykxb的表達(dá)式和反比例函數(shù)yx0)的表達(dá)式;

          2)求證:ADBC

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,AD是ABC的中線,E,F(xiàn)分別是AD和AD延長線上的點(diǎn),且DE=DF,連結(jié)BF,CE.下列說法:

          ABD和ACD面積相等;

          ②∠BAD=CAD;

          ③△BDF≌△CDE;

          BFCE;

          CE=AE.

          其中正確的有(

          A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖為某城市部分街道示意圖,四邊形ABCD為正方形,點(diǎn)G在對角線BD上,GECD,GFBC,AD=1500m,小敏行走的路線為BAGE,小聰行走的路線為BADEF.若小敏行走的路程為3100m,則小聰行走的路程為 m.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知正方形①、②在直線上,正方形③如圖放置,若正方形①、②的面積分別為81 cm2144 cm2,則正方形③的邊長為( 。

          A. 225 cm B. 63 cm C. 50 cm D. 15 cm

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,矩形ABCD中,對角線AC,BD相交于O點(diǎn),點(diǎn)P是線段AD上一動點(diǎn)(不與點(diǎn)D重合),PO的延長線交BCQ點(diǎn).

          1)求證:四邊形PBQD為平行四邊形.

          2)若AB=3cm,AD=4cmP從點(diǎn)A出發(fā).以1cm/s的速度向點(diǎn)D勻速運(yùn)動.設(shè)點(diǎn)P的運(yùn)動時(shí)間為ts,問:四邊形PBQD能夠成為菱形嗎?如果能,求出相應(yīng)的t值;如果不能,說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在ABC中,AB=AC=1,BC=,在AC邊上截取AD=BC,連接BD.

          (1)通過計(jì)算,判斷AD2ACCD的大小關(guān)系;

          (2)求∠ABD的度數(shù).

          查看答案和解析>>

          同步練習(xí)冊答案