日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,已知正方形ABCD.

          (1)請用直尺和圓規(guī),作出正方形ABCD繞點A逆時針旋轉(zhuǎn)45°后得到的正方形AB′C′D′(其中B′,C′,D′分別是點B,C,D的像)(要求保留作圖痕跡,不必寫出作法);

          (2)設(shè)CD與B′C′相交于O點,求證:OD=OB′;

          (3)若正方形的邊長為,求兩個正方形的重疊部分(四邊形AB′OD)的面積.

           

          【答案】

          解:(1)                               

          (2)連結(jié)B′D.

          ∵正方形AB′C′D′由正方形ABCD旋轉(zhuǎn)得到,∴AD=AB′,∠ADO=∠AB′O=90°,

          ∴∠ADB′=∠AB′D,∴∠ODB′=∠OB′D,∴OD=OB′.

          (3)連結(jié)AC.∵正方形ABCD,∴∠CAB=45°.

          由題意知∠BAB′=45°,∴∠CAB=∠BAB′,

          即B′在AC上,∴△OB′C是等腰直角三角形.

          設(shè)OD=OB′=x,則OC=

          ∵CD=,∴,∴x=1.

          ∴S四邊形AB′OD=S△ACD-SB′CO=.                    

          【解析】(1)利用旋轉(zhuǎn)的特征即可作出圖形;

          (2)根據(jù)旋轉(zhuǎn)的特征,可得AD=AB′,∠ADO=∠AB′O=90°,根據(jù)等邊對等角得到∠ADB′=∠AB′D,所以∠ODB′=∠OB′D,再由等角對等邊得到OD=OB′.

          (3)先說明△OB′C是等腰直角三角形,再根據(jù)勾股定理可以求得OB′的長,

          所以S四邊形AB′OD=S△ACD-SB′CO=

           

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,已知正方形ABCD的邊AB與正方形AEFM的邊AM在同一直線上,直線BE與DM交于點N.求證:BN⊥DM.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•北碚區(qū)模擬)如圖,已知正方形ABCD,點E是BC上一點,點F是CD延長線上一點,連接EF,若BE=DF,點P是EF的中點.
          (1)求證:DP平分∠ADC;
          (2)若∠AEB=75°,AB=2,求△DFP的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,已知正方形ABCD,點E在BC邊上,將△DCE繞某點G旋轉(zhuǎn)得到△CBF,點F恰好在AB邊上.
          (1)請畫出旋轉(zhuǎn)中心G (保留畫圖痕跡),并連接GF,GE;
          (2)若正方形的邊長為2a,當(dāng)CE=
          a
          a
          時,S△FGE=S△FBE;當(dāng)CE=
          2a+
          2
          a
          2
          或EC=
          2a-
          2
          a
          2
          2a+
          2
          a
          2
          或EC=
          2a-
          2
          a
          2
           時,S△FGE=3S△FBE

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,已知正方形ABCD的對角線交于O,過O點作OE⊥OF,分別交AB、BC于E、F,若AE=4,CF=3,則EF的值是( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,已知正方形ABCD的對角線AC,BD相交于點O,E是AC上的一點,過點A作AG⊥BE,垂足為G,AG交BD于點F.
          (1)試說明OE=OF;
          (2)當(dāng)AE=AB時,過點E作EH⊥BE交AD邊于H.若該正方形的邊長為1,求AH的長.

          查看答案和解析>>

          同步練習(xí)冊答案