【題目】如圖,AC平分∠BCD,AB=AD, AE⊥BC于E,AF⊥CD于F
(1)若∠ABE= 50° ,求∠CDA的度數(shù).
(2)若AE=4,BE=2,CD=6,求四邊形AECD 的面積.
【答案】(1)130° (2)28
【解析】
(1)由角平分線的性質(zhì)定理證得AE=AF,進(jìn)而證出△ABE≌△ADF,再得出∠CDA=130°;
(2)四邊形AECD的面積化為△AEC的面積+△ACD的面積,根據(jù)三角形面積公式求出結(jié)論.
(1)∵AC平分∠BCD,AE⊥BC AF⊥CD,
∴AE=AF,
在Rt△ABE和Rt△ADF中,
∴Rt△ABE≌Rt△ADF,
∴∠ADF=∠ABE=50°,
∴∠CDA=180°-∠ADF=130°;
(2)由(1)知:Rt△ABE≌Rt△ADF,
∴FD=BE=2,AF=AE=4,CE=CF=CD+FD=8,
∴四邊形AECD的面積=△AEC的面積+△ACD的面積=CEAE+
CDAF=
×4×8+
×4×6=28.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD 和正方形ECGF,其中E、H分別為AD、BC中點(diǎn),連結(jié)AF、HG、AH.
(1)求證:;
(2)求證:;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題提出:
(1)如圖①,若正方形的邊長(zhǎng)為6,點(diǎn)
分別為邊
上的點(diǎn),且
,
與
交于點(diǎn)
,連接
,則
;
問題探究:
(2)如圖②,,
是等腰直角三角形,頂點(diǎn)
分別在
的兩邊上,試說明點(diǎn)
在
的平分線上;
問題解決:
(3)如圖③,,
是等邊三角形,頂點(diǎn)
分別在
的兩邊上,點(diǎn)
在
上,且
,連接
,求
的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中,
,點(diǎn)
為
三條角平分線的交點(diǎn),
于
,
于
,
于
,且
,
,
,則點(diǎn)
到三邊
、
、
的距離為( )
A. 2cm,2cm,2cm B. 3cm,3cm,3cm
C. 4cm,4cm,4cm D. 2cm,3cm,5cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,點(diǎn)
是邊
上一個(gè)動(dòng)點(diǎn),過
作直線
,設(shè)
交
的平分線于點(diǎn)
,交
的外角平分線于點(diǎn)
.
求證:
;
當(dāng)點(diǎn)
在
上運(yùn)動(dòng)到何處時(shí),四邊形
為矩形?請(qǐng)說明理由;
當(dāng)點(diǎn)
在
上運(yùn)動(dòng)時(shí),四邊形
能為菱形嗎?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解初一年級(jí)學(xué)生每學(xué)期參加綜合實(shí)踐活動(dòng)的情況,某區(qū)教育行政部門隨機(jī)抽樣調(diào)查了部分初一學(xué)生一個(gè)學(xué)期參加綜合實(shí)踐活動(dòng)的天數(shù),并用得到的數(shù)據(jù)繪制了統(tǒng)計(jì)圖①和圖②,請(qǐng)根據(jù)圖中提供的信息,回答下列問題:
(I)本次隨機(jī)抽樣調(diào)查的學(xué)生人數(shù)為 ,圖①中的m的值為 ;
(II)求本次抽樣調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)、中位數(shù)和平均數(shù);
(III)若該區(qū)初一年級(jí)共有學(xué)生2500人,請(qǐng)估計(jì)該區(qū)初一年級(jí)這個(gè)學(xué)期參加綜合實(shí)踐活動(dòng)的天數(shù)大于4天的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料:利用完全平方公式,將多項(xiàng)式變形為
的形式.
例如:.
(1)填空:將多項(xiàng)式變形為
的形式,并判斷
與0的大小關(guān)系.
∵.
所以______0(填“>”、“<”、“=”)
(2)如圖①所示的長(zhǎng)方形邊長(zhǎng)分別是、
,求長(zhǎng)方形的面積
(用含
的式子表示);如圖②所示的長(zhǎng)方形邊長(zhǎng)分別是
、
,求長(zhǎng)方形的面積
(用含
的式子表示)
(3)比較(2)中與
的大小,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“如果二次函數(shù)的圖象與
軸有兩個(gè)公共點(diǎn),那么一元二次方程
有兩個(gè)不相等的實(shí)數(shù)根.”請(qǐng)根據(jù)你對(duì)這句話的理解,解決下面問題:若
、
(
<
)是關(guān)于
的方程
的兩根且
<
則請(qǐng)用“<”來表示
、
、
、
的大小是_________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com