日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】問(wèn)題提出:

          (1)如圖①,若正方形的邊長(zhǎng)為6,點(diǎn)分別為邊上的點(diǎn),且,交于點(diǎn),連接,則 ;

          問(wèn)題探究:

          (2)如圖②,,是等腰直角三角形,頂點(diǎn)分別在的兩邊上,試說(shuō)明點(diǎn)的平分線上;

          問(wèn)題解決:

          (3)如圖③,,是等邊三角形,頂點(diǎn)分別在的兩邊上,點(diǎn)上,且,連接,求的最小值.

          【答案】13;(2)見(jiàn)解析;(33.

          【解析】

          1)先證明△AEH≌△BFE≌△CGF≌△DHG,可得出四邊形GHEF是菱形,再根據(jù)全等三角形角之間的關(guān)系,又可得出菱形的一個(gè)角是直角,那么就可得出四邊形GHEF是正方形.過(guò)點(diǎn)O分別作OMAB于點(diǎn)M,ONBC于點(diǎn)N,根據(jù)AAS易得△EOM≌△FON,得出OC=OD,根據(jù)角平分線的判定定理可得OB平分∠ABC,根據(jù)BO=BD可得出結(jié)果..

          2)過(guò)點(diǎn)O分別作OCAP于點(diǎn)CODPN于點(diǎn)D,證明△EOC≌△BOD,得出OC=OD,根據(jù)角平分線的判定定理可得出結(jié)果.

          3)過(guò)點(diǎn)O分別作OCAP于點(diǎn)C,ODPN于點(diǎn)D,同(2)中證法可得點(diǎn)O在∠MPN的平分線上,連接PO,過(guò)點(diǎn)QQO′⊥PO于點(diǎn)O,QO′即為QO的最小值,在RtPQO′中求出QO′的值即可.

          解:(1)∵四邊形ABCD是正方形,
          ∴∠A=B=C=D=90°,AB=BC=CD=DA,
          HA=EB=FC=GD,
          AE=BF=CG=DH,
          ∴△AEH≌△BFE≌△CGF≌△DHG
          EF=FG=GH=HE,
          ∴四邊形EFGH是菱形,
          ∵△DHG≌△AEH,
          ∴∠DHG=AEH,
          ∵∠AEH+AHE=90°,
          ∴∠DHG+AHE=90°,
          ∴∠GHE=90°,
          ∴四邊形EFGH是正方形.

          EO=FO,EOF=90°.

          過(guò)點(diǎn)O分別作OMAB于點(diǎn)M,ONBC于點(diǎn)N,

          根據(jù)AAS易得△EOM≌△FON,

          MO=NO,

          BO平分∠ABC,

          BO=BD=BC=3.

          圖①

          2)過(guò)點(diǎn)O分別作OCAP于點(diǎn)CODPN于點(diǎn)D,

          ∵∠APB=90°,

          ∴∠AOB=COD=90°,

          ∴∠AOC=BOD,

          AO=BO,ACO=ODB,

          ∴△AOC≌△BODAAS),

          CO=DO,

          OCPM,ODPN,

          ∴點(diǎn)的平分線上.

          (3) 過(guò)點(diǎn)O分別作OCPM于點(diǎn)CODPN于點(diǎn)D,同(2)中證法可得點(diǎn)O在∠MPN的平分線上,連接PO,過(guò)點(diǎn)QQO′⊥PO于點(diǎn)O,QO′即為QO的最小值.

          OP為∠MPN的平分線,

          ∴∠OPN=60°,

          PQ=6,∴PO=3

          QO=3.

          QO的最小值為3.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知的直徑,,點(diǎn)、上,平分,點(diǎn)外,

          (1)求證:的切線;

          (2),求的長(zhǎng);

          (3),求陰影部分的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖所示,拋物線的頂點(diǎn)為,與軸交于、兩點(diǎn),且,與軸交于點(diǎn)

          求拋物線的函數(shù)解析式;

          的面積;

          能否在拋物線第三象限的圖象上找到一點(diǎn),使的面積最大?若能,請(qǐng)求出點(diǎn)的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在中,,的平分線交于點(diǎn),過(guò)點(diǎn)于點(diǎn),若則的長(zhǎng)為( )

          A.B.2C.D.4

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,輪船從點(diǎn)A處出發(fā),先航行至位于點(diǎn)A的南偏西15°且點(diǎn)A相距100km的點(diǎn)B處,再航行至位于點(diǎn)A的南偏東75°且與點(diǎn)B相距200km的點(diǎn)C處.

          1)求點(diǎn)C與點(diǎn)A的距離(精確到1km);

          2)確定點(diǎn)C相對(duì)于點(diǎn)A的方向.

          (參考數(shù)據(jù):

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】中,,點(diǎn)三條角平分線的交點(diǎn),,,且,,,則點(diǎn)到三邊、的距離為(

          A. 2cm,2cm,2cm B. 3cm,3cm,3cm

          C. 4cm,4cm,4cm D. 2cm,3cm,5cm

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在ABC中,∠C90°,把ABC沿直線DE折疊,使ADEBDE重合.

          (1)若∠A35°,則∠CBD的度數(shù)為________;

          (2)AC8,BC6,求AD的長(zhǎng);

          (3)當(dāng)ABm(m>0),ABC的面積為m1時(shí),求BCD的周長(zhǎng).(用含m的代數(shù)式表示)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,AC平分∠BCD,AB=AD, AEBCE,AFCDF

          1)若∠ABE= 50° ,求∠CDA的度數(shù).

          2)若AE=4,BE=2CD=6,求四邊形AECD 的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,直角坐標(biāo)系中,M經(jīng)過(guò)原點(diǎn)O(0,0),點(diǎn)A,0)與點(diǎn)B(0,﹣1),點(diǎn)D在劣弧OA上,連接BDx軸于點(diǎn)C,且∠COD=∠CBO

          (1)請(qǐng)直接寫(xiě)出M的直徑,并求證BD平分∠ABO;

          (2)在線段BD的延長(zhǎng)線上尋找一點(diǎn)E,使得直線AE恰好與M相切,求此時(shí)點(diǎn)E的坐標(biāo).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案