日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知:拋物線經(jīng)過(guò)A(2,0)、B(8,0)、C(0,數(shù)學(xué)公式
          (1)求:拋物線的解析式;
          (2)設(shè)拋物線的頂點(diǎn)為P,把△APB翻折,使點(diǎn)P落在線段AB上(不與A、B重合),記作P′,折痕為EF,設(shè)AP′=x,PE=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出定義域;
          (3)當(dāng)點(diǎn)P′在線段AB上運(yùn)動(dòng)但不與A、B重合時(shí),能否使△EFP′的一邊與x軸垂直?若能,請(qǐng)求出此時(shí)點(diǎn)P′的坐標(biāo);若不能,請(qǐng)你說(shuō)明理由.

          解:(1)設(shè)拋物線的解析式為y=a(x-2)(x-8)
          代入得a=
          ∴y=(x-2)(x-8)
          即y=

          (2)頂點(diǎn)P(5,-3
          AP=AB=BP=6
          ∴∠PAP′=60°
          作P′G⊥AP于G,
          則AG=x,P′G=x
          又P′E=PE=y,EG=6-x-y
          在Rt△P′EG中,
          ∴y=(0<x<6)

          (3)①若EP′⊥x軸,則6-y=2x,6-=2x,
          x1=12-6,x2=12+6(舍去)
          ∴P′(,0)
          ②若FP′⊥x軸,則6-y=x,6-x,
          x3=6-6,x4=-6-6(舍去)
          ∴P′(6-6,0)
          ③若EF⊥x軸,顯然不可能.
          ∴P′(,0)或P′(6-6,0)(+1分)
          分析:(1)設(shè)拋物線的解析式為y=a(x-2)(x-8)將C點(diǎn)坐標(biāo)代入即可求得拋物線的解析式;
          (2)先求出P點(diǎn)坐標(biāo),在Rt△P′EG中,根據(jù)勾股定理便可求出y關(guān)于x的函數(shù)關(guān)系式;
          (3)分別令EP′⊥x軸、FP′⊥x軸、EF⊥x軸進(jìn)行分類討論,便可得出滿足題意得P點(diǎn)坐標(biāo).
          點(diǎn)評(píng):本題是二次函數(shù)的綜合題,其中涉及到的知識(shí)點(diǎn)有拋物線的公式的求法和勾股定理等知識(shí)點(diǎn),是各地中考的熱點(diǎn)和難點(diǎn),解題時(shí)注意數(shù)形結(jié)合和分類討論等數(shù)學(xué)思想的運(yùn)用,同學(xué)們要加強(qiáng)訓(xùn)練,屬于中檔題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          已知:拋物線經(jīng)過(guò)點(diǎn)A(-1,0),B(0,3),C(2,3)三點(diǎn),頂點(diǎn)為D,精英家教網(wǎng)且與x軸的另一個(gè)交點(diǎn)為E.
          (1)求拋物線的解析式;
          (2)求三角形BDE的面積;
          (3)作∠BDE的平分線交線段BE于點(diǎn)F,求BF:FE的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖所示,在平面直角坐標(biāo)系xoy中,Rt△AOB的直角邊OB,OA分別在x軸上和y軸上,其中OA=2精英家教網(wǎng),OB=4,現(xiàn)將Rt△AOB繞著直角頂點(diǎn)O按逆時(shí)針?lè)较蛐D(zhuǎn)90°得到△COD,已知一拋物線經(jīng)過(guò)C、D、B三點(diǎn).
          (1)求這條拋物線的解析式;
          (2)連接DB,P是線段BC上一動(dòng)點(diǎn)(P不與B、C重合),過(guò)點(diǎn)P作PE∥BD交CD于E,則當(dāng)△DEP面積最大時(shí),求PE的解析式;
          (3)作點(diǎn)D關(guān)于此拋物線對(duì)稱軸的對(duì)稱點(diǎn)F,連接CF交對(duì)稱軸于點(diǎn)M,拋物線上一動(dòng)點(diǎn)R,x軸上一動(dòng)點(diǎn)Q,則在拋物線上是否存在點(diǎn)R,x軸上是否存在點(diǎn)Q,使得以C、M、Q、R為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出Q點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          已知:拋物線經(jīng)過(guò)點(diǎn)A(-1,7)、B(2,1)和點(diǎn)C(0,1).
          (1)求這條拋物線的解析式;
          (2)求該拋物線的頂點(diǎn)坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          已知某拋物線經(jīng)過(guò)點(diǎn)(2,3)和(4,3),則其對(duì)稱軸是直線
           

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)已知:拋物線經(jīng)過(guò)A(2,0)、B(8,0)、C(0,
          16
          3
          3

          (1)求:拋物線的解析式;
          (2)設(shè)拋物線的頂點(diǎn)為P,把△APB翻折,使點(diǎn)P落在線段AB上(不與A、B重合),記作P′,折痕為EF,設(shè)AP′=x,PE=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出定義域;
          (3)當(dāng)點(diǎn)P′在線段AB上運(yùn)動(dòng)但不與A、B重合時(shí),能否使△EFP′的一邊與x軸垂直?若能,請(qǐng)求出此時(shí)點(diǎn)P′的坐標(biāo);若不能,請(qǐng)你說(shuō)明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案