【題目】已知點(diǎn)、
、
在同一條直線(xiàn)上,
,將一個(gè)三角板的直角頂點(diǎn)放在點(diǎn)
處如圖,(注:
,
,
).
(1)如圖1,使三角板的短直角邊與射線(xiàn)
重合,則
__________.
(2)如圖2,將三角板繞點(diǎn)
逆時(shí)針?lè)较蛐D(zhuǎn),若
恰好平分
,請(qǐng)說(shuō)明
所在射線(xiàn)是
的平分線(xiàn).
(3)如圖3,將三角板繞點(diǎn)
逆時(shí)針轉(zhuǎn)動(dòng)到使
時(shí),求
的度數(shù).
(4)將圖1中的三角板繞點(diǎn)以每秒5°的速度沿逆時(shí)針?lè)较蛐D(zhuǎn)一周,在旋轉(zhuǎn)的過(guò)程中,第
秒時(shí),
恰好與直線(xiàn)
重合,求
的值.
【答案】(1);(2)證明見(jiàn)解析;(3)
;(4)28或64
【解析】
(1)已知,
代入∠DOE=∠COE+∠BOC,即可求出
度數(shù);
(2)OE恰好平分∠AOC,可得∠AOE=∠COE,根據(jù)∠DOE=90°得∠AOE+∠DOB=90°,∠COE+∠COD=90°,推出∠COD=∠DOB,即可得出答案;
(3)根據(jù)平角等于180°,已知,
,
即可求出∠BOD的度數(shù);
(4)分兩種情況:在一周之內(nèi),當(dāng)OE與射線(xiàn)OC的反向延長(zhǎng)線(xiàn)重合時(shí),三角板繞點(diǎn)O旋轉(zhuǎn)了140°;當(dāng)OE與射線(xiàn)OC重合時(shí),三角板繞點(diǎn)O旋轉(zhuǎn)了320°;依此列出方程求解即可.
(1)∵∠DOE=∠COE+∠BOC=,
又∵,
∴∠COE=;
(2)∵OE平分∠AOC,
∴∠COE=∠AOE=∠COA,
∵∠EOD=,
∴∠AOE+∠DOB=,∠COE+∠COD=
,
∴∠COD=∠DOB,
∴OD所在射線(xiàn)是∠BOC的平分線(xiàn).
(3)設(shè)∠COD=x度,則∠AOE=4x度,
∵∠DOE=,∠BOC=
,
∴5x=40,
∴x=8,
即∠COD=
∴∠BOD=
(4)如圖,分兩種情況:
在一周之內(nèi),當(dāng)OE與射線(xiàn)OC的反向延長(zhǎng)線(xiàn)重合時(shí),三角板繞點(diǎn)O旋轉(zhuǎn)了,
5t=140, t=28;
當(dāng)OE與射線(xiàn)OC重合時(shí),三角板繞點(diǎn)O旋轉(zhuǎn)了,
5t=320,t=64.
所以當(dāng)t=28秒或64秒時(shí),OE與直線(xiàn)OC重合.
綜上所述,t的值為28或64.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,大樹(shù)AB與大數(shù)CD相距13m,小華從點(diǎn)B沿BC走向點(diǎn)C,行走一段時(shí)間后他到達(dá)點(diǎn)E,此時(shí)他仰望兩棵大樹(shù)的頂點(diǎn)A和D,兩條視線(xiàn)的夾角正好為90°,且EA=ED.已知大樹(shù)AB的高為5m,小華行走的速度為1m/s,小華行走到點(diǎn)E的時(shí)間是( )
A. 13s B. 8s C. 6s D. 5s
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)B,F,C,E在直線(xiàn)l上(F,C之間不能直接測(cè)量),點(diǎn)A,D在l異側(cè),測(cè)得AB=DE,AC=DF,BF=EC.
(1)求證:△ABC≌△DEF;
(2)指出圖中所有平行的線(xiàn)段,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四點(diǎn)A、B、C、D.
(1)用圓規(guī)和無(wú)刻度的直尺按下列要求與步驟畫(huà)出圖形:
①畫(huà)直線(xiàn)AB.
②畫(huà)射線(xiàn)DC.
③延長(zhǎng)線(xiàn)段DA至點(diǎn)E,使.(保留作圖痕跡)
④畫(huà)一點(diǎn)P,使點(diǎn)P既在直線(xiàn)AB上,又在線(xiàn)段CE上.
(2)在(1)中所畫(huà)圖形中,若cm,
cm,點(diǎn)F為線(xiàn)段DE的中點(diǎn),求AF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】[x]表示不超過(guò)x的最大整數(shù),例如[﹣3.5]=﹣4,[2.1]=2,若y=x﹣[x],下列命題:①當(dāng)x=﹣0.5時(shí),y=0.5;②y的取值范圍是:0≤y≤1;③對(duì)于所有的自變量x,函數(shù)值y隨著x增大而一直增大.其中正確命題有 (只填寫(xiě)正確命題的序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某景區(qū)的三個(gè)景點(diǎn)A、B、C在同一線(xiàn)路上.甲、乙兩名游客從景點(diǎn)A出發(fā),甲步行到景點(diǎn)C;乙乘景區(qū)觀光車(chē)先到景點(diǎn)B,在B處停留一段時(shí)間后,再步行到景點(diǎn)C,甲、乙兩人同時(shí)到達(dá)景點(diǎn)C.甲、乙兩人距景點(diǎn)A的路程y(米)與甲出發(fā)的時(shí)間x(分)之間的函數(shù)圖象如圖所示.
(1)乙步行的速度為_ __米/分.
(2)求乙乘景區(qū)觀光車(chē)時(shí)y與x之間的函數(shù)關(guān)系式.
(3)甲出發(fā)多長(zhǎng)時(shí)間與乙第一次相遇?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們定義:兩個(gè)二次項(xiàng)系數(shù)之和為1,對(duì)稱(chēng)軸相同,且圖象與y軸交點(diǎn)也相同的二次函數(shù)互為友好同軸二次函數(shù)例如:
的友好同軸二次函數(shù)為
.
請(qǐng)你分別寫(xiě)出
,
的友好同軸二次函數(shù);
滿(mǎn)足什么條件的二次函數(shù)沒(méi)有友好同軸二次函數(shù)?滿(mǎn)足什么條件的二次函數(shù)的友好同軸二次函數(shù)是它本身?
如圖,二次函數(shù)
:
與其友好同軸二次函數(shù)
都與y軸交于點(diǎn)A,點(diǎn)B、C分別在
、
上,點(diǎn)B,C的橫坐標(biāo)均為
,它們關(guān)于
的對(duì)稱(chēng)軸的對(duì)稱(chēng)點(diǎn)分別為
,
,連結(jié)
,
,
,CB.
若
,且四邊形
為正方形,求m的值;
若
,且四邊形
的鄰邊之比為1:2,直接寫(xiě)出a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形EFGH的頂點(diǎn)在邊長(zhǎng)為2的正方形的邊上.若設(shè)AE=x,正方形EFGH的面積為y,則y與x的函數(shù)關(guān)系為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是規(guī)格為8×8的正方形網(wǎng)格,請(qǐng)?jiān)谒o網(wǎng)格中按下列要求操作:
(1)在網(wǎng)格中建立平面直角坐標(biāo)系,使A點(diǎn)坐標(biāo)為(﹣2,4),B點(diǎn)坐標(biāo)為(﹣4,2);
(2)在第二象限內(nèi)的格點(diǎn)上畫(huà)一點(diǎn)C,使點(diǎn)C與線(xiàn)段AB組成一個(gè)以AB為底的等腰三角形,且腰長(zhǎng)是無(wú)理數(shù),則C點(diǎn)坐標(biāo)是 ;
(3)求△ABC中BC邊上的高長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com