日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在⊙O中,直徑AB=2,CA切⊙O于A,BC交⊙O于D,若∠C=45°,則
          (1)BD的長(zhǎng)是______
          【答案】分析:(1)連接AD,由于AC是⊙O的切線,所以AB⊥AC,再根據(jù)∠C=45°可知AB=AC=2,由勾股定理可求出BC的長(zhǎng),由于AB是⊙O的直徑,所以∠ADB=90°,故D是BC的中點(diǎn),故可求出BD的長(zhǎng)度;
          (2)連接OD,因?yàn)镺是AB的中點(diǎn),D是BC的中點(diǎn),所以O(shè)D是△ABC的中位線,所以O(shè)D⊥AB,故=,所以與弦BD組成的弓形的面積等于與弦AD組成的弓形的面積,所以S陰影=S△ABC-S△ABD,故可得出結(jié)理論.
          解答:解:(1)連接AD,
          ∵AC是⊙O的切線,
          ∴AB⊥AC,
          ∵∠C=45°,
          ∴AB=AC=2,
          ∴BC===2,
          ∵AB是⊙O的直徑,
          ∴∠ADB=90°,
          ∴D是BC的中點(diǎn),
          ∴BD=BC=

          (2)連接OD,
          ∵O是AB的中點(diǎn),D是BC的中點(diǎn),
          ∴OD是△ABC的中位線,
          ∴OD=1,
          ∴OD⊥AB,
          =,
          與弦BD組成的弓形的面積等于與弦AD組成的弓形的面積,
          ∴S陰影=S△ABC-S△ABD=AB•AC-AB•OD=×2×2-×2×1=2-1=1.
          點(diǎn)評(píng):本題考查的是切線的性質(zhì),涉及到三角形的面積、等腰三角形的性質(zhì)及三角形中位線定理、圓周角定理,根據(jù)題意作出輔助線,構(gòu)造出直角三角形是解答此題的關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,在⊙O中,直徑AB為10cm,弦AC為6cm,∠ACB的平分線交⊙O于D,則BC=
           
          cm,∠ABD=
           
          度.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,在⊙O中,直徑CD的長(zhǎng)度為10cm,AB是弦,且AB⊥CD于M,OM=3cm,求弦AB的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖,在⊙O中,直徑AB與弦CD垂直,垂足為E,連接AC,將△ACE沿AC翻折得到△ACF,直線F精英家教網(wǎng)C與直線AB相交于點(diǎn)G.
          (1)證明:直線FC與⊙O相切;
          (2)若OB=BG,求證:四邊形OCBD是菱形.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (2013•百色)如圖,在⊙O中,直徑CD垂直于弦AB,若∠C=25°,則∠ABO的度數(shù)是(  )

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (2012•朝陽(yáng)區(qū)二模)如圖,在⊙O中,直徑AB⊥弦CD于點(diǎn)H,E是⊙O上的點(diǎn),若∠BEC=25°,則∠BAD的度數(shù)為(  )

          查看答案和解析>>

          同步練習(xí)冊(cè)答案