日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 觀察下列等式
          1
          1×2
          =1-
          1
          2
          ,
          1
          2×3
          =
          1
          2
          -
          1
          3
          1
          3×4
          =
          1
          3
          -
          1
          4
          ,將以上三個(gè)等式兩邊分別相加得
          1
          1×2
          +
          1
          2×3
          +
          1
          3×4
          =1-
          1
          2
          +
          1
          2
          -
          1
          3
          +
          1
          3
          -
          1
          4
          =
          3
          4

          (1)猜想并寫出:
          1
          n(n+1)
          =
          1
          n
          -
          1
          n+1
          1
          n
          -
          1
          n+1

          (2)直接寫出下列各式的計(jì)算結(jié)果:
          1
          1×2
          +
          1
          2×3
          +
          1
          3×4
          +…+
          1
          2008×2009
          =
          2008
          2009
          2008
          2009
          ;
          1
          1×2
          +
          1
          2×3
          +
          1
          3×4
          +…+
          1
          n(n+1)
          =
          n
          n+1
          n
          n+1

          (3)探究并計(jì)算:
          1
          2×4
          +
          1
          4×6
          +
          1
          6×8
          +…+
          1
          2008×2010
          分析:(1)歸納總結(jié)得到拆項(xiàng)規(guī)律,寫出即可;
          (2)兩式分別利用拆項(xiàng)規(guī)律變形,計(jì)算即可得到結(jié)果;
          (3)根據(jù)得出的規(guī)律變形,計(jì)算即可得到結(jié)果.
          解答:解:(1)
          1
          n(n+1)
          =
          1
          n
          -
          1
          n+1
          ;
          (2)①原式=1-
          1
          2
          +
          1
          2
          -
          1
          3
          +…+
          1
          2008
          -
          1
          2009
          =1-
          1
          2009
          =
          2008
          2009
          ;
          ②原式=1-
          1
          2
          +
          1
          2
          -
          1
          3
          +…+
          1
          n
          -
          1
          n+1
          =1-
          1
          n+1
          =
          n
          n+1
          ;
          (3)原式=
          1
          2
          ×(
          1
          2
          -
          1
          4
          +
          1
          4
          -
          1
          6
          +…+
          1
          2008
          -
          1
          2010
          )=
          1
          2
          ×
          502
          1005
          =
          251
          1005

          故答案為:(1)
          1
          n
          -
          1
          n+1
          ;(2)①
          2008
          2009
          ;②
          n
          n+1
          點(diǎn)評(píng):此題考查了分式的加減法,弄清題中的規(guī)律是解本題的關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          觀察下列等式
          1
          1×2
          =1-
          1
          2
          1
          2×3
          =
          1
          2
          -
          1
          3
          ,
          1
          3×4
          =
          1
          3
          -
          1
          4
          ,將以上三個(gè)等式兩邊分別相加得:
          1
          1×2
          +
          1
          2×3
          +
          1
          3×4
          =1-
          1
          2
          +
          1
          2
          -
          1
          3
          +
          1
          3
          -
          1
          4
          =1-
          1
          4
          =
          3
          4

          (1)猜想并寫出:
          1
          n(n+1)
          =
          1
          n
          -
          1
          n+1
          1
          n
          -
          1
          n+1

          (2)直接寫出下列各式的計(jì)算結(jié)果:
          1
          1×2
          +
          1
          2×3
          +
          1
          3×4
          +…+
          1
          2012×2013
          =
          2012
          2013
          2012
          2013

          1
          1×2
          +
          1
          2×3
          +
          1
          3×4
          +…+
          1
          n(n+1)
          =
          n
          n+1
          n
          n+1

          (3)探究并計(jì)算:
          1
          2×4
          +
          1
          4×6
          +
          1
          6×8
          +…+
          1
          2012×2014

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          觀察下列等式
          1
          1×2
          =1-
          1
          2
          ,
          1
          2×3
          =
          1
          2
          -
          1
          3
          1
          3×4
          =
          1
          3
          -
          1
          4
          ,將以上三個(gè)等式兩邊分別相加得:
          1
          1×2
          +
          1
          2×3
          +
          1
          3×4
          =1-
          1
          2
          +
          1
          2
          -
          1
          3
          +
          1
          3
          -
          1
          4
          =1-
          1
          4
          =
          3
          4

          (1)猜想并寫出:
          1
          n(n+1)
          =  
          1
          n
          -
          1
          n+1
          1
          n
          -
          1
          n+1

          (2)直接寫出下列各式的計(jì)算結(jié)果:
          1
          1×2
          +
          1
          2×3
          +
          1
          3×4
          +…+
          1
          2011×2012
          =
          2011
          2012
          2011
          2012

          1
          1×2
          +
          1
          2×3
          +
          1
          3×4
          +…+
          1
          n×(n+1)
          =
          n
          n+1
          n
          n+1

          (3)探究并計(jì)算:
          1
          2×4
          +
          1
          4×6
          +
          1
          6×8
          +…+
          1
          2010×2012

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          觀察下列等式
          1
          1×2
          =1-
          1
          2
          1
          2×3
          =
          1
          2
          -
          1
          3
          ,
          1
          3×4
          =
          1
          3
          -
          1
          4
          ,
          將以上三個(gè)等式兩邊分別相加得:
          1
          1×2
          +
          1
          2×3
          +
          1
          3×4
          =1-
          1
          2
          +
          1
          2
          -
          1
          3
          +
          1
          3
          -
          1
          4
          =1-
          1
          4
          =
          3
          4

          (1)猜想并寫出:
          1
          n(n+1)
          =
          1
          n
          -
          1
          n+1
          1
          n
          -
          1
          n+1

          (2)直接寫出下列各式的計(jì)算結(jié)果:
          1
          1×2
          +
          1
          2×3
          +
          1
          3×4
          +…+
          1
          2007×2008
          =
          2007
          2008
          2007
          2008

          1
          1×2
          +
          1
          2×3
          +
          1
          3×4
          +…+
          1
          n(n+1)
          =
          n
          n+1
          n
          n+1

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          觀察下列等式
          1
          1×2
          =1-
          1
          2
          ,
          1
          2×3
          =
          1
          2
          -
          1
          3
          1
          3×4
          =
          1
          3
          -
          1
          4
          ,
          將以上三個(gè)等式兩邊分別相加得:
          1
          1×2
          +
          1
          2×3
          +
          1
          3×4
          =1-
          1
          2
          +
          1
          2
          -
          1
          3
          +
          1
          3
          -
          1
          4
          =1-
          1
          4
          =
          3
          4

          (1)猜想并寫出:
          1
          n(n+1)
          =
          1
          n(n+1)
          =
          1
          n
          -
          1
          n+1
          1
          n(n+1)
          =
          1
          n
          -
          1
          n+1

          (2)直接寫出下列各式的計(jì)算結(jié)果:
          1
          1×2
          +
          1
          2×3
          +
          1
          3×4
          +…+
          1
          2011×2012
          =
          2011
          2012
          2011
          2012
          ;
          (3)如果有理數(shù)a,b滿足|ab-2|+(1-a)2=0,試求 
          1
          (a+1)(b+2)
          +
          1
          (a+3)(b+4)
          +
          1
          (a+5)(b+6)
          +…+
          1
          (a+2009)(b+2010)

          查看答案和解析>>

          同步練習(xí)冊(cè)答案