日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 觀察下列等式
          1
          1×2
          =1-
          1
          2
          1
          2×3
          =
          1
          2
          -
          1
          3
          ,
          1
          3×4
          =
          1
          3
          -
          1
          4
          ,
          將以上三個等式兩邊分別相加得:
          1
          1×2
          +
          1
          2×3
          +
          1
          3×4
          =1-
          1
          2
          +
          1
          2
          -
          1
          3
          +
          1
          3
          -
          1
          4
          =1-
          1
          4
          =
          3
          4

          (1)猜想并寫出:
          1
          n(n+1)
          =
          1
          n
          -
          1
          n+1
          1
          n
          -
          1
          n+1

          (2)直接寫出下列各式的計算結(jié)果:
          1
          1×2
          +
          1
          2×3
          +
          1
          3×4
          +…+
          1
          2007×2008
          =
          2007
          2008
          2007
          2008
          ;
          1
          1×2
          +
          1
          2×3
          +
          1
          3×4
          +…+
          1
          n(n+1)
          =
          n
          n+1
          n
          n+1
          分析:(1)先根據(jù)題中所給出的列子進(jìn)行猜想,寫出猜想結(jié)果即可;
          (2)根據(jù)(1)中的猜想計算出結(jié)果.
          解答:解:(1)∵
          1
          1×2
          =1-
          1
          2
          1
          2×3
          =
          1
          2
          -
          1
          3
          ,
          1
          3×4
          =
          1
          3
          -
          1
          4
          ,
          1
          n(n+1)
          =
          1
          n
          -
          1
          n+1
          ;

          (2)①
          1
          1×2
          +
          1
          2×3
          +
          1
          3×4
          +…+
          1
          2007×2008

          =1-
          1
          2
          +
          1
          2
          -
          1
          3
          +…+
          1
          2007
          -
          1
          2008

          =1-
          1
          2008

          =
          2007
          2008
          ;

          1
          1×2
          +
          1
          2×3
          +
          1
          3×4
          +…+
          1
          n(n+1)

          =1-
          1
          2
          +
          1
          2
          -
          1
          3
          +…+
          1
          n
          -
          1
          n+1

          =1-
          1
          n+1

          =
          n
          n+1

          故答案為:
          1
          n
          -
          1
          n+1
          2007
          2008
          ;
          n
          n+1
          點評:本題考查的是分式的加減,根據(jù)題意找出規(guī)律是解答此題的關(guān)鍵.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          觀察下列等式
          1
          1×2
          =1-
          1
          2
          1
          2×3
          =
          1
          2
          -
          1
          3
          ,
          1
          3×4
          =
          1
          3
          -
          1
          4
          ,將以上三個等式兩邊分別相加得:
          1
          1×2
          +
          1
          2×3
          +
          1
          3×4
          =1-
          1
          2
          +
          1
          2
          -
          1
          3
          +
          1
          3
          -
          1
          4
          =1-
          1
          4
          =
          3
          4

          (1)猜想并寫出:
          1
          n(n+1)
          =
          1
          n
          -
          1
          n+1
          1
          n
          -
          1
          n+1

          (2)直接寫出下列各式的計算結(jié)果:
          1
          1×2
          +
          1
          2×3
          +
          1
          3×4
          +…+
          1
          2012×2013
          =
          2012
          2013
          2012
          2013
          ;
          1
          1×2
          +
          1
          2×3
          +
          1
          3×4
          +…+
          1
          n(n+1)
          =
          n
          n+1
          n
          n+1

          (3)探究并計算:
          1
          2×4
          +
          1
          4×6
          +
          1
          6×8
          +…+
          1
          2012×2014

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          觀察下列等式
          1
          1×2
          =1-
          1
          2
          ,
          1
          2×3
          =
          1
          2
          -
          1
          3
          ,
          1
          3×4
          =
          1
          3
          -
          1
          4
          ,將以上三個等式兩邊分別相加得:
          1
          1×2
          +
          1
          2×3
          +
          1
          3×4
          =1-
          1
          2
          +
          1
          2
          -
          1
          3
          +
          1
          3
          -
          1
          4
          =1-
          1
          4
          =
          3
          4

          (1)猜想并寫出:
          1
          n(n+1)
          =  
          1
          n
          -
          1
          n+1
          1
          n
          -
          1
          n+1

          (2)直接寫出下列各式的計算結(jié)果:
          1
          1×2
          +
          1
          2×3
          +
          1
          3×4
          +…+
          1
          2011×2012
          =
          2011
          2012
          2011
          2012

          1
          1×2
          +
          1
          2×3
          +
          1
          3×4
          +…+
          1
          n×(n+1)
          =
          n
          n+1
          n
          n+1

          (3)探究并計算:
          1
          2×4
          +
          1
          4×6
          +
          1
          6×8
          +…+
          1
          2010×2012

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          觀察下列等式
          1
          1×2
          =1-
          1
          2
          1
          2×3
          =
          1
          2
          -
          1
          3
          ,
          1
          3×4
          =
          1
          3
          -
          1
          4
          ,將以上三個等式兩邊分別相加得
          1
          1×2
          +
          1
          2×3
          +
          1
          3×4
          =1-
          1
          2
          +
          1
          2
          -
          1
          3
          +
          1
          3
          -
          1
          4
          =
          3
          4

          (1)猜想并寫出:
          1
          n(n+1)
          =
          1
          n
          -
          1
          n+1
          1
          n
          -
          1
          n+1

          (2)直接寫出下列各式的計算結(jié)果:
          1
          1×2
          +
          1
          2×3
          +
          1
          3×4
          +…+
          1
          2008×2009
          =
          2008
          2009
          2008
          2009
          ;
          1
          1×2
          +
          1
          2×3
          +
          1
          3×4
          +…+
          1
          n(n+1)
          =
          n
          n+1
          n
          n+1

          (3)探究并計算:
          1
          2×4
          +
          1
          4×6
          +
          1
          6×8
          +…+
          1
          2008×2010

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          觀察下列等式
          1
          1×2
          =1-
          1
          2
          1
          2×3
          =
          1
          2
          -
          1
          3
          ,
          1
          3×4
          =
          1
          3
          -
          1
          4

          將以上三個等式兩邊分別相加得:
          1
          1×2
          +
          1
          2×3
          +
          1
          3×4
          =1-
          1
          2
          +
          1
          2
          -
          1
          3
          +
          1
          3
          -
          1
          4
          =1-
          1
          4
          =
          3
          4

          (1)猜想并寫出:
          1
          n(n+1)
          =
          1
          n(n+1)
          =
          1
          n
          -
          1
          n+1
          1
          n(n+1)
          =
          1
          n
          -
          1
          n+1
          ;
          (2)直接寫出下列各式的計算結(jié)果:
          1
          1×2
          +
          1
          2×3
          +
          1
          3×4
          +…+
          1
          2011×2012
          =
          2011
          2012
          2011
          2012
          ;
          (3)如果有理數(shù)a,b滿足|ab-2|+(1-a)2=0,試求 
          1
          (a+1)(b+2)
          +
          1
          (a+3)(b+4)
          +
          1
          (a+5)(b+6)
          +…+
          1
          (a+2009)(b+2010)

          查看答案和解析>>

          同步練習(xí)冊答案