日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 拋物線(b,c均為常數(shù))與x軸交于兩點(diǎn),與y軸交于點(diǎn)
          (1)求該拋物線對應(yīng)的函數(shù)表達(dá)式;
          (2)若P是拋物線上一點(diǎn),且點(diǎn)P到拋物線的對稱軸的距離為3,請直接寫出點(diǎn)P的坐標(biāo).

          (1);(2)

          解析試題分析:(1)由拋物線,代入即可求得該拋物線對應(yīng)的函數(shù)表達(dá)式.
          (2)求拋物線的對稱軸,根據(jù)點(diǎn)P到拋物線的對稱軸的距離為3確定點(diǎn)P的橫坐標(biāo),代入函數(shù)表達(dá)式即可求得縱坐標(biāo).
          試題解析:(1) ∵拋物線與y軸交于點(diǎn),∴c="3" .?
          .
          又∵拋物線與x軸交于點(diǎn),∴b="-4" .?
          .
          (2)∵,∴拋物線的對稱軸為
          ∵當(dāng)點(diǎn)P到拋物線的對稱軸的距離為3時,,
          ∴當(dāng)時,
          ∴點(diǎn)P的坐標(biāo)為
          考點(diǎn):1.曲線上點(diǎn)的坐標(biāo)與方程的關(guān)系;2.二次函數(shù)的性質(zhì).

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          在平面直角坐標(biāo)系xOy中(O為坐標(biāo)原點(diǎn)),已知拋物線y=x2+bx+c過點(diǎn)A(4,0),B(1,﹣3).
          (1)求b,c的值,并寫出該拋物線的對稱軸和頂點(diǎn)坐標(biāo);
          (2)設(shè)拋物線的對稱軸為直線l,點(diǎn)P(m,n)是拋物線上在第一象限的點(diǎn),點(diǎn)E與點(diǎn)P關(guān)于直線l對稱,點(diǎn)E與點(diǎn)F關(guān)于y軸對稱,若四邊形OAPF的面積為48,求點(diǎn)P的坐標(biāo);
          (3)在(2)的條件下,設(shè)M是直線l上任意一點(diǎn),試判斷MP+MA是否存在最小值?若存在,求出這個最小值及相應(yīng)的點(diǎn)M的坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          在平面直角坐標(biāo)系中,拋物線經(jīng)過點(diǎn)(0,),(3,4).
          (1)求拋物線的表達(dá)式及對稱軸;
          (2)設(shè)點(diǎn)關(guān)于原點(diǎn)的對稱點(diǎn)為,點(diǎn)是拋物線對稱軸上一動點(diǎn),記拋物線在,之間的部分為圖象(包含兩點(diǎn)).若直線與圖象有公共點(diǎn),結(jié)合函數(shù)圖像,求點(diǎn)縱坐標(biāo)的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          如圖,二次函數(shù)的圖象交x軸于A(﹣1,0),B(2,0),交y軸于C(0,﹣2),過A,C畫直線.
          (1)求二次函數(shù)的解析式;
          (2)點(diǎn)P在x軸正半軸上,且PA=PC,求OP的長;
          (3)點(diǎn)M在二次函數(shù)圖象上,以M為圓心的圓與直線AC相切,切點(diǎn)為H.
          ①若M在y軸右側(cè),且△CHM∽△AOC(點(diǎn)C與點(diǎn)A對應(yīng)),求點(diǎn)M的坐標(biāo);
          ②若⊙M的半徑為 ,求點(diǎn)M的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          如圖,在平面直角坐標(biāo)系中,直線與拋物線交于A、B兩點(diǎn),點(diǎn)A在x軸上,點(diǎn)B的橫坐標(biāo)為-8.
          (1)求該拋物線的解析式;
          (2)點(diǎn)P是直線AB上方的拋物線上一動點(diǎn)(不與點(diǎn)A、B重合),過點(diǎn)P作x軸的垂線,垂足為C,交直線AB于點(diǎn)D,作PE⊥AB于點(diǎn)E.
          ①設(shè)△PDE的周長為l,點(diǎn)P的橫坐標(biāo)為x,求l關(guān)于x的函數(shù)關(guān)系式,并求出l的最大值;
          ②連接PA,以PA為邊作圖示一側(cè)的正方形APFG.隨著點(diǎn)P的運(yùn)動,正方形的大小、位置也隨之改變.當(dāng)頂點(diǎn)F或G恰好落在y軸上時,直接寫出對應(yīng)的點(diǎn)P的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          在美化校園的活動中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長),用28m長的籬笆圍成一個矩形花園ABCD(籬笆只圍AB,BC兩邊),設(shè)AB=xm.
          (1)若花園的面積為192m2,  求x的值;
          (2)若在P處有一棵樹與墻CD,AD的距離分別是15m和6m,要將這棵樹圍在花園內(nèi)(含邊界,不考慮樹的粗細(xì)),求花園面積S的最大值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          如圖所示,已知二次函數(shù)經(jīng)過、C三點(diǎn),點(diǎn)是拋物線與直線的一個交點(diǎn).
          (1)求二次函數(shù)關(guān)系式和點(diǎn)C的坐標(biāo);
          (2)對于動點(diǎn),求的最大值;
          (3)若動點(diǎn)M在直線上方的拋物線運(yùn)動,過點(diǎn)M做x軸的垂線交x軸于點(diǎn)F,如果直線AP把線段MF分成1:2的兩部分,求點(diǎn)M的坐標(biāo)。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          如圖,二次函數(shù)的圖象與軸交于、兩點(diǎn),與軸交于點(diǎn),已知點(diǎn)(-1,0),點(diǎn)C(0,-2).
          (1)求拋物線的函數(shù)解析式;
          (2)試探究的外接圓的圓心位置,并求出圓心坐標(biāo);
          (3)此拋物線上是否存在點(diǎn)P,使得以P、A、C、B為頂點(diǎn)的四邊形為梯形.若存在,請寫出所有符合條件的P點(diǎn)坐標(biāo);若不存在,請說明理由;
          (4)若點(diǎn)是線段下方的拋物線上的一個動點(diǎn),求面積的最大值以及此時點(diǎn)的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          已知二次函數(shù)的圖象經(jīng)過點(diǎn)(0,- 3),且頂點(diǎn)坐標(biāo)為(1,- 4).求這個解析式。

          查看答案和解析>>

          同步練習(xí)冊答案