日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】背景知識:

          如圖(2),在RtABC中,∠ACB=90°,則:.

          1)解決問題:

          如圖(2),∠ACD = 90°,AC = DC,MN是過點A的直線,過點DDBMN于點B,連接CB,試探究線段BABC、BD之間的數(shù)量關(guān)系.

          不妨過點CCECB,MN交于點E,易發(fā)現(xiàn)圖中出現(xiàn)了一對全等三角形,即 ,由此可得線段BA、BC、BD之間的數(shù)量關(guān)系是: .

          2)類比探究:

          將圖(2)中的MN繞點A旋轉(zhuǎn)到圖(3)的位置,其它條件不變,試探究線段BABC、BD之間的數(shù)量關(guān)系,并證明.

          3)拓展應(yīng)用:

          將圖(2)中的MN繞點A旋轉(zhuǎn)到圖(4)的位置,其它條件不變,若BD=2,BC=,則AB的長為 .

          【答案】(1);(2) BDAB=BC,理由詳見解析;(34.

          【解析】

          1)利用ASA證得,所以AE=BD,EB=AE+AB=BD+AB

          2)過點CCECB, MN交于點E,利用ASA證得△ACE≌△DCB,進而求得線段之間的關(guān)系,同(1),即可證出.

          3)過點CECCBMN于點E,同(2),可證:,即可求出AB的長.

          1

          (2) BDAB=BC .

          過點CCECB, MN交于點E,則∠ECB=90°

          ∴∠ECB+∠BCA=ACD+∠BCA,即:∠ECA=BCD.

          DBMN, ∴∠ABD=ACD=90°,

          ACBD的交點為點F,則∠BFA=DFC, ∴∠BAF=FDC

          在△ACE與△DCB中,

          ∴△ACE≌△DCBASA

          AE=BD, CE=CB

          ∴在RtBCE, BE=BC,

          BD =AE=BA+BE= BA+BC

          BDAB=BC .

          (3)

          如圖所示,過點CECCBMN于點E

          同(2),可證:

          AE=BD=2

          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源: 題型:

          【題目】列方程解應(yīng)用題:

          某玩具廠生產(chǎn)一種玩具,按照控制固定成本降價促銷的原則,使生產(chǎn)的玩具能夠及時售出,據(jù)市場調(diào)查:每個玩具按元銷售時,每天可銷售個;若銷售單價每降低元,每天可多售出個.已知每個玩具的固定成本為元,問這種玩具的銷售單價為多少元時,廠家每天可獲利潤元?

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在平面直角坐標系xOy中,已知正比例函數(shù)yx的圖象與反比例函數(shù)y的圖象交于Aa,-2),B兩點.

          1)求反比例函數(shù)的表達式和點B的坐標;

          2P是第一象限內(nèi)反比例函數(shù)圖象上一點,過點Py軸的平行線,交直線AB于點C,連接PO,若POC的面積為3,求點P的坐標.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在邊長為1的小正方形網(wǎng)格中,點A,B,C均落在格點上.

          (1)直接寫出ABC的面積 .

          (2)畫出ABC關(guān)于直線的軸對稱圖形A1B1C1

          (3)判斷A1B1C1的形狀,并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,已知直線y=x-2與y軸交于點C,與x軸交于點B,與反比例函數(shù)y=的圖象在第一象限交于點A,連接OA,若S△AOB∶S△BOC=1∶2,則k的值為____.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】某學校在一次環(huán)保知識宣傳活動中,需要印刷若干份調(diào)查問卷。印刷廠有甲、乙兩種收費方式:甲種方式收制版費6,每一份收印刷費0.1元;乙種方式不收制版費,每印一份收印刷費0.12元。設(shè)共印調(diào)查問卷份:

          (1)按甲種方式應(yīng)收費多少元,按乙種方式應(yīng)收費多少元(用含的代數(shù)式表示);

          (2)若共需印刷500份調(diào)查問卷,通過計算說明選用哪種方式合算?

          (3)印刷多少份調(diào)查問卷時,甲、乙兩種方式收費一樣多?

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,四邊形ABCD是平行四邊形,點A(1,0),B(3,1),C(3,3).反比例函數(shù)y= (x>0)的圖像經(jīng)過點D,P是一次函數(shù)y=kx+3-3k(k≠0)的圖像與該反比例函數(shù)圖像的一個公共點.

          (1)求反比例函數(shù)的表達式;

          (2)通過計算說明一次函數(shù)y=kx+3-3k(k≠0)的圖像一定經(jīng)過點C;

          (3)對于一次函數(shù)y=kx+3-3k(k≠0),當y隨x的增大而增大時,確定點P的橫坐標的取值范圍(不必寫出過程).

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】由于天氣炎熱,某校根據(jù)《學校衛(wèi)生工作條例》,為預(yù)防“蚊蟲叮咬”,對教室進行“薰藥消毒”.已知藥物在燃燒機釋放過程中,室內(nèi)空氣中每立方米含藥量y(毫克)與燃燒時間x(分鐘)之間的關(guān)系如圖所示(即圖中線段OA和雙曲線在A點及其右側(cè)的部分),當空氣中每立方米的含藥量低于2毫克時,對人體無毒害作用,那么從消毒開始,至少在_______分鐘內(nèi),師生不能呆在教室.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】某公司員工分別在A、BC三個住宅區(qū),A區(qū)有30人,B區(qū)有15人,C,區(qū)有10人,三個區(qū)在一直線上,位置如圖所示,公司的接送車打算在此間只設(shè)一個停靠點,為要使所有員工步行到停靠點的路程總和最少,那么?奎c的位置應(yīng)在_____區(qū).

          查看答案和解析>>

          同步練習冊答案