日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 8.如圖,OM是∠AOC的平分線,ON是∠BOC的平分線.

          (1)如圖1,當∠AOB=90°,∠BOC=60°時,∠MON的度數(shù)是多少?為什么?
          (2)如圖2,當∠AOB=70°,∠BOC=60°時,∠MON=35°(直接寫出結(jié)果).
          (3)如圖3,當∠AOB=α,∠BOC=β時,猜想:∠MON=$\frac{1}{2}α$(直接寫出結(jié)果).
          (4)從(1)(2)(3)的結(jié)果中,你能看出什么規(guī)律?

          分析 (1)求出∠AOC度數(shù),求出∠MOC和∠NOC的度數(shù),代入∠MON=∠MOC-∠NOC求出即可;
          (2)求出∠AOC度數(shù),求出∠MOC和∠NOC的度數(shù),代入∠MON=∠MOC-∠NOC求出即可;
          (3)求出∠AOC度數(shù),求出∠MOC和∠NOC的度數(shù),代入∠MON=∠MOC-∠NOC求出即可;
          (4)由前三個即可得出結(jié)論.

          解答 解:(1)如圖1,∵∠AOB=90°,∠BOC=60°,
          ∴∠AOC=90°+60°=150°,
          ∵OM平分∠AOC,ON平分∠BOC,
          ∴∠MOC=$\frac{1}{2}$∠AOC=75°,∠NOC=$\frac{1}{2}$∠BOC=30°
          ∴∠MON=∠MOC-∠NOC=45°.   

          (2)如圖2,
          ∵∠AOB=70°,∠BOC=60°,
          ∴∠AOC=70°+60°=130°,
          ∵OM平分∠AOC,ON平分∠BOC,
          ∴∠MOC=$\frac{1}{2}$∠AOC=65°,∠NOC=$\frac{1}{2}$∠BOC=30°
          ∴∠MON=∠MOC-∠NOC=65°-30°=35°.   
          故答案為:35°.
           
          (3)如圖3,∠MON=$\frac{1}{2}$α,與β的大小無關(guān).    
          理由:∵∠AOB=α,∠BOC=β,
          ∴∠AOC=α+β.         
          ∵OM是∠AOC的平分線,ON是∠BOC的平分線,
          ∴∠MOC=$\frac{1}{2}$∠AOC=$\frac{1}{2}$(α+β),
          ∠NOC=$\frac{1}{2}$∠BOC=$\frac{1}{2}$β,
          ∴∠AON=∠AOC-∠NOC=α+β-$\frac{1}{2}$β=α+$\frac{1}{2}$β.       
          ∴∠MON=∠MOC-∠NOC
          =$\frac{1}{2}$(α+β)-$\frac{1}{2}$β=$\frac{1}{2}$α           
          即∠MON=$\frac{1}{2}$α,
          故答案為:$\frac{1}{2}$α.
          (4)∠MON=$\frac{1}{2}$∠AOB,與∠BOC的大小無關(guān).

          點評 本題考查了角平分線定義和角的有關(guān)計算,關(guān)鍵是求出∠AOC、∠MOC、∠NOC的度數(shù)和得出∠MON=∠MOC-∠NOC

          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源: 題型:解答題

          18.如圖,已知在∠ABC中,BD為∠ABC的平分線,AB=BC,點P在BD上,PM⊥AD于M,PN⊥CD于N,求證:
          (1)BD平分∠ADC;
          (2)PM=PN.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:解答題

          19.根據(jù)從特殊到一般的數(shù)學推理方法說明“積的乘方,等于把積的每一個因式分別乘方,再把所得的冪相乘.(ab)n=anbn(n為正整數(shù))”.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:填空題

          3.如圖△ABC的三個頂點在網(wǎng)格中格點上,求sinA=$\frac{3}{5}$.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:解答題

          13.已知a,b.c為三角形ABC的三邊,且滿足a2+2b2+c2-2b(a+c)=0,試判斷三角形ABC的形狀.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:解答題

          20.已知矩形OABC在如圖所示平面直角坐標系中,點B的坐標為(4,3),連接AC.動點P從點B出發(fā),以2cm/s的速度,沿直線BC方向運動,運動到C為止(不包含B、C兩點),過點P作PQ∥AC交線段BA于點Q,以PQ為邊向下作正方形PQMN,設(shè)正方形PQMN與△ABC重疊部分圖形面積為S(cm2),設(shè)點P的運動時間為t(s).
          (1)請用含t的代數(shù)式表示N點的坐標;
          (2)求S與t之間的函數(shù)關(guān)系式,并指出t的取值范圍;
          (3)如圖②,點G在邊OC上,且OG=1cm,在點P從點B出發(fā)的同時,另有一動點E從點O出發(fā),以2cm/s的速度,沿x軸正方向運動,以O(shè)G、OE為一組鄰邊作矩形OEFG.請直接寫出當點F落在正方形PQMN的內(nèi)部(不含邊界)時t的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:解答題

          17.已知y1=a1(x-m)2+5,點(m,25)在拋物線y2=a2x2+b2x+c2上,其中m>0.
          (1)若a1=-1,點(1,4)在拋物線y1=a1(x-m)2+5上,求m的值;
          (2)記O為坐標原點,拋物線y2=a2x2+b2x+c2的頂點為M,若c2=0,點A(2,0)在此拋物線上,∠OMA=90°,求點M的坐標;
          (3)若y1+y2=x2+16x+13,且4a2c2-b22=-8a2,求拋物線y2=a2x2+b2x+c2的解析式.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:解答題

          18.如圖,△ABC內(nèi)接于⊙O,若⊙O的半徑為6,∠B=60°,求AC的長.

          查看答案和解析>>

          同步練習冊答案