日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (1)如圖1,OA、OB表示兩條相交的公路,點M、N是兩個工廠,現(xiàn)在要在∠AOB內(nèi)建立一個貨物中轉(zhuǎn)站,使中轉(zhuǎn)站到公路OA、OB的距離相等,并且到工廠M、N的距離也相等,用尺規(guī)作出貨物中轉(zhuǎn)站的位置.
          (2)如圖2,E、F是△ABC的邊AB、AC上的點,在BC上求一點M,使△EMF的周長最。鞒鳇cM的位置(不寫作法,保留作圖痕跡).
          分析:(1)作出MN的垂直平分線,∠AOB的角平分線,兩直線的交點即為貨物中轉(zhuǎn)站的位置;
          (2)由于△EMF的周長=EM+EF+FM,而EF是定值,故只需在BC上找一點M,使EM+FM最。绻OE關(guān)于BC的對稱點為E1,使EM+FM最小就是使E1M+FM最。
          解答:解:(1)①作∠AOB的角平分線;
          ②連接MN,作MN的垂直平分線,交OM于一點,交點就是所求貨物中轉(zhuǎn)站的位置.

          (2)①作E關(guān)于BC的對稱點E1,
          ②連接E1F交BC于點M.
          點評:(1)考查應用與設計作圖;用到的知識點為:到一個角兩邊距離相等的點,在角的平分線上;到一條線段兩個端點距離相等的點,在線段的垂直平分線上.
          (2)考查了軸對稱-最短路線問題,解這類問題的關(guān)鍵是把兩條線段的和轉(zhuǎn)化為一條線段,運用三角形三邊關(guān)系解決.
          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,半徑OA=2cm,圓心角為90°的扇形OAB中,C為
          AB
          的中點,D為OB的中點,則圖中陰影部分的面積為
           
          cm2

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖,直線OA與反比例函數(shù)的圖象交于點A(3,3),向下平移直線OA,與反比例函數(shù)的精英家教網(wǎng)圖象交于點B(6,m)與y軸交于點C,
          (1)求直線BC的解析式;
          (2)求經(jīng)過A、B、C三點的二次函數(shù)的解析式;
          (3)設經(jīng)過A、B、C三點的二次函數(shù)圖象的頂點為D,對稱軸與x軸的交點為E.
          問:在二次函數(shù)的對稱軸上是否存在一點P,使以O、E、P為頂點的三角形與△BCD相似?若存在,請求出點P的坐標;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖,射線OA表示的是
          北偏東65°
          北偏東65°
          方向,射線OB表示的是
          南偏東20°
          南偏東20°
          方向.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖已知OA=OD,要證明△AOB≌△DOC,還應添加一個條件
          BO=CO
          BO=CO
          (只寫一個)

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          已知:如圖,射線OA和點P.
          (1)作射線OP;
          (2)過點P作PM⊥OP,與OA交于點M;
          (3)過點P作PN⊥OA,垂足為N;
          (4)圖中線段
          PN
          PN
          的長表示點P到射線OA所在直線的距離.

          查看答案和解析>>

          同步練習冊答案