日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖1,在Rt△ABC中,∠C=90°,BC=8厘米,點(diǎn)D在AC上,CD=3厘米.點(diǎn)P、Q分別由A、C兩點(diǎn)同時(shí)出發(fā),點(diǎn)P沿AC方向向點(diǎn)C勻速移動(dòng),速度為每秒k厘米,行完AC全程用時(shí)8秒;點(diǎn)Q沿CB方向向點(diǎn)B勻速移動(dòng),速度為每秒1厘米.設(shè)運(yùn)動(dòng)的時(shí)間為x秒(0<x<8)DCQ的面積為y1平方厘米,△PCQ的面積為y2平方厘米.
          (1)求y1與x的函數(shù)關(guān)系,并在圖2中畫(huà)出y1的圖象;
          (2)如圖2,y2的圖象是拋物線的一部分,其頂點(diǎn)坐標(biāo)是(4,12),求AC的長(zhǎng);
          (3)在圖2中,點(diǎn)G是x軸正半軸上一點(diǎn),且0<OG<4,過(guò)G作EF垂直于x軸,分別交y1、y2的圖象于點(diǎn)E、F.
          ①說(shuō)出線段EF的長(zhǎng)在圖1中所表示的實(shí)際意義;
          ②線段EF長(zhǎng)有可能等于3嗎?若能,請(qǐng)求出相應(yīng)的x的值,若不能請(qǐng)說(shuō)明理由.
          分析:(1)根據(jù)∠C=90°,利用直角三角形的面積等于兩直角邊乘積的一半列式整理即可得解,再利用兩點(diǎn)法畫(huà)出函數(shù)圖象即可;
          (2)根據(jù)x=4表示出AP、PC、CQ的長(zhǎng),再根據(jù)△PCQ的面積列式求解即可得到k的值,然后根據(jù)AC=8k計(jì)算即可得解;
          (3)①根據(jù)函數(shù)值y表示出兩個(gè)三角形的面積,EF表示兩個(gè)三角形的面積的差;
          ②根據(jù)k值求出y2與x的關(guān)系式,然后表示出EF,再令EF=3,解關(guān)于x的方程即可.
          解答:解:(1)∵∠C=90°,
          ∴S△DCQ=
          1
          2
          •CQ•CD=
          1
          2
          ×3x=
          3
          2
          x,
          ∴y1=
          3
          2
          x,
          圖象如圖所示;

          (2)∵拋物線的頂點(diǎn)坐標(biāo)是(4,12),
          ∴當(dāng)x=4時(shí),△PCQ面積為12,
          此時(shí),AP=4k,
          PC=AC-AP=8k-4k=4k,
          CQ=4,
          ∴S△PCQ=
          1
          2
          CQ•PC=12,
          1
          2
          ×4×4k=12,
          解得k=
          3
          2
          ,
          所以,點(diǎn)P的速度每秒
          3
          2
          厘米,
          所以,AC=8×
          3
          2
          =12厘米;


          (3)①觀察圖象,知線段的長(zhǎng)EF=y2-y1,
          表示△PCQ與△DCQ的面積差(或△PDQ面積);
          ②y2=
          1
          2
          PC•CQ=
          1
          2
          (12-
          3
          2
          x)•x=-
          3
          4
          x2+6x,
          ∵EF=y2-y1,
          ∴EF=-
          3
          4
          x2+6x-
          3
          2
          x=-
          3
          4
          x2+
          9
          2
          x,
          假設(shè)EF=3,則-
          3
          4
          x2+
          9
          2
          x=3,
          整理得,x2-6x+4=0,
          解得x1=3+
          5
          ,x2=3-
          5
          ,
          ∵0<OG<4,
          ∴0<x<4,
          ∴x=3-
          5
          ,
          故當(dāng)x=3-
          5
          時(shí),EF=3.
          點(diǎn)評(píng):本題是二次函數(shù)綜合題型,主要考查了三角形的面積,作一次函數(shù)的圖象,二次函數(shù)的性質(zhì),以及函數(shù)圖象上平行于y軸的兩點(diǎn)間的距離的表示方法,綜合題,但難度不大,理清點(diǎn)P、Q的運(yùn)動(dòng)過(guò)程中兩個(gè)三角形的直角邊的表示是解題的關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖1,在Rt△ABC中,∠A=90°,AB=AC,BC=4
          2
          ,另有一等腰梯形DEFG(GF∥DE)的底邊DE與BC重合,兩腰分別落在AB,AC上,且G,F(xiàn)分別是AB,AC的中點(diǎn).
          精英家教網(wǎng)
          (1)求等腰梯形DEFG的面積;
          (2)操作:固定△ABC,將等腰梯形DEFG以每秒1個(gè)單位的速度沿BC方向向右運(yùn)動(dòng),直到點(diǎn)D與點(diǎn)C重合時(shí)停止.設(shè)運(yùn)動(dòng)時(shí)間為x秒,運(yùn)動(dòng)后的等腰梯形為DEF′G′(如圖2).
          探究1:在運(yùn)動(dòng)過(guò)程中,四邊形BDG′G能否是菱形?若能,請(qǐng)求出此時(shí)x的值;若不能,請(qǐng)說(shuō)明理由;
          探究2:設(shè)在運(yùn)動(dòng)過(guò)程中△ABC與等腰梯形DEFG重疊部分的面積為y,求y與x的函數(shù)關(guān)系式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖1,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,點(diǎn)D在邊AB上運(yùn)動(dòng),DE平分∠CDB交邊BC于點(diǎn)E,EM⊥BD垂足為M,EN⊥CD垂足為N.
          精英家教網(wǎng)
          (1)當(dāng)AD=CD時(shí),求證:DE∥AC;
          (2)探究:AD為何值時(shí),△BME與△CNE相似?
          (3)探究:AD為何值時(shí),四邊形MEND與△BDE的面積相等?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖1,在平面直角坐標(biāo)系中,拋物線y=
          1
          4
          x2-6
          與直線y=
          1
          2
          x
          相交于A,B兩點(diǎn).
          (1)求線段AB的長(zhǎng);
          (2)若一個(gè)扇形的周長(zhǎng)等于(1)中線段AB的長(zhǎng),當(dāng)扇形的半徑取何值時(shí),扇形的面積最大,最大面積是多少;
          (3)如圖2,線段AB的垂直平分線分別交x軸、y軸于C,D兩點(diǎn),垂足為點(diǎn)M,分別求出OM,OC,OD的長(zhǎng),并驗(yàn)證等式
          1
          OC2
          +
          1
          OD2
          =
          1
          OM2
          是否成立;
          (4)如圖3,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,設(shè)BC=a,AC=b,AB=c.CD=b,試說(shuō)明:
          1
          a2
          +
          1
          b2
          =
          1
          h2

          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖1,在Rt△ABC中,∠ACB=90°,分別以AB、AC為底邊向△ABC的外側(cè)作等腰△ABD和ACE,且AD⊥AC,AB⊥AE,DE和AB相交于F.試探究線段FD、FE的數(shù)量關(guān)系,并加以證明.
          說(shuō)明:如果你經(jīng)歷反復(fù)探索,沒(méi)有找到解決問(wèn)題的方法,可以從圖2、3中選取一個(gè),并分別補(bǔ)充條件∠CAB=45°、∠CAB=30°后,再完成你的證明.
          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖1,在Rt△ABC中,AB=AC=3,BD為AC邊的中線,AB1⊥BD交BC于B1,B1A1⊥AC于A1精英家教網(wǎng)
          (1)求AA1的長(zhǎng);
          (2)如圖2,在Rt△A1B1C中按上述操作,則AA2的長(zhǎng)為
           
          ;
          (3)在Rt△A2B2C中按上述操作,則AA3的長(zhǎng)為
           

          (4)一直按上述操作得到Rt△An-1Bn-1C,則AAn的長(zhǎng)為
           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案