日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 9.如圖,⊙O中,半徑CO垂直于直徑AB,D為OC的中點(diǎn),過(guò)D作弦EF∥AB,EB與OC交于點(diǎn)P.
          (1)求∠ABE的度數(shù).
          (2)若連結(jié)AB=8,求EF的長(zhǎng).

          分析 (1)連接OE,可得到△DOE為Rt△,由D為OC的中點(diǎn),則可求出∠OED,于是得到∠AOE,利用圓周角定理即可求出∠ABE;
          (2)由垂徑定理和勾股定理求出DE,即可得出EF的長(zhǎng).

          解答 解:連接OE,如圖,
          ∵半徑CO垂直于直徑AB,而EF∥AB,
          ∴∠EDO=90°,∠AOE=∠OED,
          又∵D為OC的中點(diǎn),
          ∴OD=$\frac{1}{2}$OC=$\frac{1}{2}$OE,
          ∴∠OED=30°,
          ∴∠AOE=30°,
          ∴∠ABE=$\frac{1}{2}$∠AOE=15°;
          (2)∵EF∥AB,OC⊥AB,
          ∴OC⊥EF,
          ∴EF=2DE,
          ∵AB=8,
          ∴OE=OC=$\frac{1}{2}$AB=4,
          ∴OD=$\frac{1}{2}$OC=2,
          ∴DE=$\sqrt{{OE}^{2}-O{D}^{2}}$=2$\sqrt{3}$,
          ∴EF=4$\sqrt{3}$.

          點(diǎn)評(píng) 本題考查了圓周角定理、垂徑定理、勾股定理;熟練掌握?qǐng)A周角定理是解決問(wèn)題的關(guān)鍵.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

          19.已知正六邊形的邊心距為$\sqrt{3}$,則該正六邊形的面積是6$\sqrt{3}$.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

          20.如圖,將一張正方形紙片剪去四個(gè)大小形狀一樣的小正方形,然后將其中一個(gè)小正方形再按同樣的方法剪成四個(gè)小正方形,再將其中一個(gè)小正方形剪成四個(gè)小正方形,再將其中的一個(gè)小正方形剪成四個(gè)小正方形,如此循環(huán)進(jìn)行下去.
          (1)填表:
          剪的次數(shù)12345
          正方形個(gè)數(shù)47101316
          (2)如果剪了100次,共剪出多少個(gè)小正方形?
          (3)如果剪n次,共剪出多少個(gè)小正方形?
          (4)如果要剪出100個(gè)正方形,那么需要剪多少次?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

          17.如圖,∠A+∠B+∠C+∠D+∠E的度數(shù)為( 。
          A.180oB.270oC.360oD.540o

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

          4.(1)【學(xué)習(xí)心得】
          小剛同學(xué)在學(xué)習(xí)完“圓”這一章內(nèi)容后,感覺(jué)到一些幾何問(wèn)題,如果添加輔助圓,運(yùn)用圓的知識(shí)解決,可以使問(wèn)題變得非常容易.
          例如:如圖1,在△ABC中,AB=AC,∠BAC=90°,D是△ABC外一點(diǎn),且AD=AC,求∠BDC的度數(shù),若以點(diǎn)A為圓心,AB為半徑作輔助圓⊙A,則點(diǎn)C、D必在⊙A上,∠BAC是⊙A的圓心角,而∠BDC是圓周角,從而可容易得到∠BDC=45°.
          (2)【問(wèn)題解決】
          如圖2,在四邊形ABCD中,∠BAD=∠BCD=90°,∠BDC=25°,求∠BAC的數(shù).
          小剛同學(xué)認(rèn)為用添加輔助圓的方法,可以使問(wèn)題快速解決,他是這樣思考的:△ABD的外接圓就是以BD的中點(diǎn)為圓心,$\frac{1}{2}$BD長(zhǎng)為半徑的圓;△ACD的外接圓也是以BD的中點(diǎn)為圓心,$\frac{1}{2}$BD長(zhǎng)為半徑的圓.這樣A、B、C、D四點(diǎn)在同一個(gè)圓上,進(jìn)而可以利用圓周角的性質(zhì)求出∠BAC的度數(shù),請(qǐng)運(yùn)用小剛的思路解決這個(gè)問(wèn)題.
          (3)【問(wèn)題拓展】
          如圖3,在△ABC中,∠BAC=45°,AD是BC邊上的高,且BD=6,CD=2,求AD的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

          14.陳老師和學(xué)生做一個(gè)猜數(shù)游戲,他讓學(xué)生按照以下步驟進(jìn)行計(jì)算:
          ①任想一個(gè)兩位數(shù)a,把a(bǔ)乘以2,再加上9,把所得的和再乘以2;
          ②把a(bǔ)乘以2,再加上30,把所得的和除以2;
          ③把①所得的結(jié)果減去②所得的結(jié)果,這個(gè)差即為最后的結(jié)果.
          陳老師說(shuō):只要你告訴我最后的結(jié)果,我就能猜出你最初想的兩位數(shù)a.
          學(xué)生周曉曉計(jì)算的結(jié)果是96,陳老師立即猜出周曉曉最初想的兩位數(shù)是31.
          請(qǐng):
          (1)用含a的式子表示游戲的過(guò)程;
          (2)學(xué)生小明計(jì)算的結(jié)果是120,你能猜出他最初想的兩位數(shù)是多少嗎?
          (3)請(qǐng)用自己的語(yǔ)言解釋陳老師猜數(shù)的方法.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

          1.如圖,是一個(gè)10×10的正方形網(wǎng)格,其中正方形的頂點(diǎn)稱(chēng)為格點(diǎn),網(wǎng)格中△ABC的頂點(diǎn)A,B,C均在格點(diǎn)上,利用網(wǎng)格建立的平面直角坐標(biāo)系中點(diǎn)A的坐標(biāo)為(3,4).
          (1)直接寫(xiě)出B,C兩點(diǎn)的坐標(biāo):B(1,2);C(5,1);
          (2)將A,B,C三點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)分別乘-1,得到點(diǎn)A1,B1,C1,在圖中描出點(diǎn)A1,B1,C1,并畫(huà)出△A1B1C1;
          (3)描述圖中的△A1B1C1與△ABC的位置關(guān)系.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

          18.如圖,有一個(gè)形如六邊形的點(diǎn)陣,它的中心是一個(gè)點(diǎn),算第一層;第二層每邊有兩個(gè)點(diǎn),第三層每邊有三個(gè)點(diǎn),依此類(lèi)推.
          (1)填寫(xiě)表:
          層數(shù)1234
          該層對(duì)應(yīng)的點(diǎn)數(shù)161218
          所有層的總點(diǎn)數(shù)171937
          (2)寫(xiě)出第n層所對(duì)應(yīng)的點(diǎn)數(shù).
          (3)如果某一層有96個(gè)點(diǎn),請(qǐng)計(jì)算它是第幾層?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

          19.如圖,已知等腰直角三角形ABC的直角邊長(zhǎng)與正方形MNPQ的邊長(zhǎng)均為10cm,AC與MN在同一直線上,開(kāi)始時(shí)點(diǎn)A與點(diǎn)M重合,讓△ABC向右移動(dòng),最后讓點(diǎn)A與點(diǎn)N重合.
          (1)試寫(xiě)出重疊部分面積y(cm2)與線段MA的長(zhǎng)度x(cm)之間的函數(shù)解析式;
          (2)寫(xiě)出自變量的取值范圍;
          (3)寫(xiě)出當(dāng)x=4時(shí)重疊部分的面積.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案