日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】無錫陽山地區(qū)有A、B兩村盛產(chǎn)水蜜桃,現(xiàn)A村有水蜜桃200噸,B村有水蜜桃300.計劃將這些水蜜桃運到C、D兩個冷藏倉庫,已知C倉庫可儲存240噸,D倉庫可儲存260噸;從A村運往C、D兩處的費用分別為每噸20元和25元,從B村運往CD兩處的費用分別為每噸15元和18.設(shè)從A村運往C倉庫的水蜜桃重量為x噸,A、B兩村運往兩倉庫的水蜜桃運輸費用分別為yA元和yB.

          1)請先填寫下表,再根據(jù)所填寫內(nèi)容分別求出yA、yBx之間的函數(shù)關(guān)系式;

          收地運地

          C

          D

          總計

          A

          x

          ______

          200

          B

          ______

          ______

          300

          總計

          240

          260

          500

          2)試討論A、B兩村中,哪個村的運費較少;

          3)考慮到B村的經(jīng)濟承受能力,B村的水蜜桃運費不得超過4830元,在這種情況下,請問怎樣調(diào)運,才能使兩村運費之和最小?求出這個最小值.

          【答案】1,,;(2)當時,B村運費較少;當時,A、B村運費一樣;當時,A村運費較少;(3A村運50噸到C倉庫,運150噸到D倉庫,B村運190噸到C倉庫,運110噸到D倉庫;9580元.

          【解析】

          (1)先設(shè)從A村運往C倉庫的水蜜桃重量為x噸,就可以分別表示出A村到D處,B村到C處,B村到D處的數(shù)量.利用運送的噸數(shù)×每噸運輸費用=總費用,列出函數(shù)解析式即可解答;
          (2)(1)中的函數(shù)解析式聯(lián)立方程與不等式解答即可;
          (3)首先由B村的水蜜桃的運費不得超過4830元得出不等式,再由兩個函數(shù)和,根據(jù)自變量的取值范圍,求得最值.

          解:(1)AB,兩村運輸水蜜桃情況如表,

          收地運地

          C

          D

          總計

          A

          x

          (200-x)

          200

          B

          (240-x)

          (60+x)

          300

          總計

          240

          260

          500

          根據(jù)上表及題意,得
          yA=20x+25(200x)=50005x
          yB=15(240x)+18(x+60)=3x+4680;
          (2) ①當yA=yB時,即50005x=3x+4680,
          解得x=40,
          x=40,兩村的運費一樣多,
          ②當yA>yB,即50005x>3x+4680,
          解得x<40
          0<x<40時,A村運費較高
          ③當yAyB,,即50005x<3x+4680
          解得x>40,
          40<x≤200時,B村運費較高;
          (3) B村的水蜜桃運費不得超過4830元,
          yB =3x+4680≤4830,
          解得x≤50
          兩村運費之和為yA+yB=50005x+3x+4680=96802x,
          要使兩村運費之和最小,所以x的值取最大時,運費之和最小
          故當x=50時,最小費用是96802×50=9580()。
          此時的調(diào)運方案為:
          A村運50噸到C倉庫,運150噸到D倉庫,
          B村運190噸到C倉庫,運110噸到D倉庫.

          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源: 題型:

          【題目】6分)小聰是個數(shù)學愛好者,他發(fā)現(xiàn)從1開始,連續(xù)幾個奇數(shù)相加,和的變化規(guī)律如右表所示:

          加數(shù)個數(shù)

          連續(xù)奇數(shù)的和S

          1

          1=

          2

          1+3=22

          3

          1+3+5=32

          4

          1+3+5+7=42

          5

          1+3+5+7+9=52

          n

          1)如果n=7,則S的值為

          2)求1+3+5+7+…+199的值;

          3)求13+15+17+…+79的值.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】填空完成下列推理過程

          已知:如圖,BDAC,EFAC,點D、F分別是垂足,∠1=∠4

          試說明:∠ADG=∠C

          解:∵BDAC,EFAC(已知)

          ∴∠290°390°(垂直的定義)

          ∴∠2=∠3(等量代換)

          BDEF   

          ∴∠4=∠5(兩直線平行同位角相等)

          ∵∠1=∠4(已知)

          1=∠5   

          DGCB(內(nèi)錯角相等兩直線平行)

          ∴∠ADG=∠C   

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】已知ABCD.

          (1)如圖①,若∠ABE30°,∠BEC148°,求∠ECD的度數(shù);

          (2)如圖②,若CFEB,CF平分∠ECD,試探究∠ECD與∠ABE之間的數(shù)量關(guān)系,并證明.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】已知關(guān)于x的方程x2-(k+2)x+2k=0.

          (1)求證:k取任何實數(shù)值,方程總有實數(shù)根;

          (2)若此方程的一個根是1,請求出方程的另一個根,并求以此兩根為邊長的直角三角形的周長.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,拋物線y=x2+bx﹣2與x軸交于A、B兩點,與y軸交于C點,且A(﹣1,0).

          (1)求拋物線的解析式及頂點D的坐標;

          (2)判斷△ABC的形狀,證明你的結(jié)論;

          (3)點M是x軸上的一個動點,當△DCM的周長最小時,求點M的坐標.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,BPABC中∠ABC的平分線,CP是∠ACB的外角的平分線,如果∠ABP=20°,∠ACP=50°,則∠A+P=

          A.70°B.80°C.90°D.100°

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】為保護環(huán)境,我市公交公司計劃購買A型和B型兩種環(huán)保節(jié)能公交車共10輛.若購買A型公交車1輛,B型公交車2輛,共需400萬元;若購買A型公交車2輛,B型公交車1輛,共需350萬元.

          (1)求購買A型和B型公交車每輛各需多少萬元?

          (2)預計在某線路上A型和B型公交車每輛年均載客量分別為60萬人次和100萬人次.若該公司購買A型和B型公交車的總費用不超過1200萬元,且確保這10輛公交車在該線路的年均載客總和不少于680萬人次,則該公司有哪幾種購車方案?

          (3)在(2)的條件下,哪種購車方案總費用最少?最少總費用是多少萬元?

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,圓心都在x軸正半軸上的半圓O1,半圓O2,…,半圓On與直線l相切.設(shè)半圓O1,半圓O2,…,半圓On的半徑分別是r1,r2,…,rn,則當直線l與x軸所成銳角為30°,且r1=1時,r2018_________.

          查看答案和解析>>

          同步練習冊答案