日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,⊙O是△ABC的外接圓,AB為直徑,∠BAC的平分線交⊙O與點(diǎn)D,過(guò)點(diǎn)D的切線分別交AB、AC的延長(zhǎng)線與點(diǎn)E、F.
          (1)求證:AF⊥EF.
          (2)小強(qiáng)同學(xué)通過(guò)探究發(fā)現(xiàn):AF+CF=AB,請(qǐng)你幫忙小強(qiáng)同學(xué)證明這一結(jié)論.
          【答案】分析:(1)首先連接OD,由EF是⊙O的切線,可得OD⊥EF,由∠BAC的平分線交⊙O與點(diǎn)D,易證得OD⊥BC,即可得BC∥EF,由AB為直徑,根據(jù)直徑所對(duì)的圓周角是直角,可得AC⊥BC,繼而證得AF⊥EF.
          (2)首先連接BD并延長(zhǎng),交AF的延長(zhǎng)線于點(diǎn)H,連接CD,易證得△ADH≌△ADB,△CDF≌△HDF,繼而證得AF+CF=AB.
          解答:證明:(1)∵EF是⊙O的切線,
          ∴OD⊥EF,
          ∵AD平分∠BAC,
          ∴∠CAD=∠BAD,
          =
          ∴OD⊥BC,
          ∴BC∥EF,
          ∵AB為直徑,
          ∴∠ACB=90°,
          即AC⊥BC,
          ∴AF⊥EF;

          (2)連接BD并延長(zhǎng),交AF的延長(zhǎng)線于點(diǎn)H,連接CD,
          ∵AB是直徑,
          ∴∠ADB=90°,
          即AD⊥BH,
          ∴∠ADB=∠ADH=90°,
          在△ABD和△ADH中,

          ∴△ABD≌△AHD(ASA),
          ∴AH=AB,
          ∵EF是切線,
          ∴∠CDF=∠CAD,∠HDF=∠EDB=∠BAD,
          ∴∠EDF=∠HDF,
          ∵DF⊥AF,DF是公共邊,
          ∴△CDF≌△HDF(ASA),
          ∴FH=CF,
          ∴AF+CF=AF+FH=AH=AB.
          即AF+CF=AB,
          點(diǎn)評(píng):此題考查了切線的性質(zhì)、弦切角定理、圓周角定理以及全等三角形的判定與性質(zhì).此題難度適中,注意掌握輔助線的作法,注意數(shù)形結(jié)合思想的應(yīng)用.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,⊙O是△ABC的外接圓,OD⊥AB于點(diǎn)D、交⊙O于點(diǎn)E,∠C=60°,如果⊙O的半徑為2,那么OD=
           

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          24、如圖,AD是△ABC的高,且AD平分∠BAC,請(qǐng)指出∠B與∠C的關(guān)系,并說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (2013•雅安)如圖,DE是△ABC的中位線,延長(zhǎng)DE至F使EF=DE,連接CF,則S△CEF:S四邊形BCED的值為( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (2012•黔東南州)如圖,⊙O是△ABC的外接圓,圓心O在AB上,過(guò)點(diǎn)B作⊙O的切線交AC的延長(zhǎng)線于點(diǎn)D.
          (1)求證:△ABC∽△BDC.
          (2)若AC=8,BC=6,求△BDC的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖,BD是∠ABC的平分線,DE⊥AB于E,S△ABC=90,AB=18,BC=12,求DE的長(zhǎng).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案