日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知:如圖,MN是⊙O的切線,切點(diǎn)為A,MN平行于弦CD,弦AB交CD于點(diǎn)E.
          求證:AC2=AE•AB.
          證明:連接AO并延長交⊙O于點(diǎn)F,連接CF,CB,
          ∵M(jìn)N是⊙O的切線,
          ∴FA⊥MN,
          ∴∠MAC+∠CAF=90°,
          ∵AF過點(diǎn)O,
          ∴∠ACF=90°,
          ∴∠CAF+∠F=90°,
          ∴∠MAC=∠F
          ∵∠CAB=∠CAB
          ∴△ACE△ABC
          AC
          AB
          =
          AE
          AC

          ∴AC2=AE•AB.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

          下列說法正確的是( 。
          A.一個點(diǎn)可以確定一條直線
          B.兩個點(diǎn)可以確定兩條直線
          C.三個點(diǎn)可以確定一個圓
          D.不在同一直線上的三點(diǎn)確定一個圓

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,AB是⊙O的直徑,C是⊙O上一點(diǎn),AD垂直于過點(diǎn)C的直線,垂足為D,且AC平分∠BAD.
          (1)求證:CD是⊙O的切線;
          (2)若AC=2
          5
          ,CD=2,求⊙O的直徑.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

          (q0fq•張家口一模)如4:⊙O與AB相切于點(diǎn)A,BO與⊙O交于點(diǎn)6,∠BA6=手0°,則∠B等于(  )
          A.20°B.50°C.30°D.60°

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

          在△ABC中,∠C=90°,∠B=30°,O為AB上一點(diǎn),AO=2,⊙O的半徑為
          9
          5
          ,⊙O與AC的位置關(guān)系是( 。
          A.相交B.相離C.相切D.不能確定

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,點(diǎn)O在Rt△ABC的斜邊AB上,以O(shè)為圓心,OA長為半徑的⊙O切BC于點(diǎn)D,且分別交AC、AB于點(diǎn)E、F,若AC=6,BC=6
          3

          (1)求⊙O的半徑;
          (2)求弓形EDF的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          閱讀下面的材料:
          如圖(1),在以AB為直徑的半圓O內(nèi)有一點(diǎn)P,AP、BP的延長線分別交半圓O于點(diǎn)C、D.
          求證:AP•AC+BP•BD=AB2
          證明:連接AD、BC,過P作PM⊥AB,則∠ADB=∠AMP=90°,
          ∴點(diǎn)D、M在以AP為直徑的圓上;同理:M、C在以BP為直徑的圓上.
          由割線定理得:AP•AC=AM•AB,BP•BD=BM•BA,
          所以,AP•AC+BP•BD=AM•AB+BM•AB=AB•(AM+BM)=AB2
          當(dāng)點(diǎn)P在半圓周上時,也有AP•AC+BP•BD=AP2+BP2=AB2成立,那么:
          (1)如圖(2)當(dāng)點(diǎn)P在半圓周外時,結(jié)論AP•AC+BP•BD=AB2是否成立?為什么?
          (2)如圖(3)當(dāng)點(diǎn)P在切線BE外側(cè)時,你能得到什么結(jié)論?將你得到的結(jié)論寫出來.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          已知:如圖,在兩個同心圓中,大圓的弦AB切小圓于C點(diǎn),AB=12cm.求兩個圓之間的圓環(huán)面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          含30°角的直角三角板ABC中,∠A=30°.將其繞直角頂點(diǎn)C順時針旋轉(zhuǎn)α角(0°<α<120°且α≠90°),得到Rt△A'B'C,A'C邊與AB所在直線交于點(diǎn)D,過點(diǎn)D作DEA'B'交CB'邊于點(diǎn)E,連接BE.
          (1)如圖1,當(dāng)A'B'邊經(jīng)過點(diǎn)B時,α=______°;
          (2)在三角板旋轉(zhuǎn)的過程中,若∠CBD的度數(shù)是∠CBE度數(shù)的m倍,猜想m的值并證明你的結(jié)論;
          (3)設(shè)BC=1,AD=x,△BDE的面積為S,以點(diǎn)E為圓心,EB為半徑作⊙E,當(dāng)S=
          1
          3
          S△ABC
          時,求AD的長,并判斷此時直線A'C與⊙E的位置關(guān)系.

          查看答案和解析>>

          同步練習(xí)冊答案