日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知點(diǎn)P是拋物線y=
          14
          x2+1
          上的任意一點(diǎn),設(shè)點(diǎn)P到x軸的距離為d1,點(diǎn)P與點(diǎn)F(0,2)的距離為d2,過(guò)點(diǎn)P的直線交拋物線于P、Q兩點(diǎn),點(diǎn)M為線段PQ的中點(diǎn).
          (1)猜想d1、d2的關(guān)系并證明;
          (2)如果線段PQ的長(zhǎng)度為5,求點(diǎn)M到x軸的最短距離.
          分析:(1)本題可設(shè)出P點(diǎn)坐標(biāo),然后根據(jù)拋物線的解析式表示出d1,根據(jù)兩點(diǎn)間的距離公式表示出d2,然后進(jìn)行證明即可.
          (2)本題要利用(1)的結(jié)論進(jìn)行求解.過(guò)P、Q作x軸的垂線設(shè)垂足為P1、Q1.根據(jù)(1)的結(jié)論可以得出PP1=PF,QF=QQ1,如果過(guò)M作x軸的垂線MC,那么MC就是梯形PP1Q1Q的中位線,即MC=
          1
          2
          (PP1+QQ1),如果MC最短,那么PP1+QQ1就需最短,而PP1=PF,QQ1=QF,因此PF+QF就必須最短,根據(jù)兩點(diǎn)間線段最短可知當(dāng)P、F、Q共線時(shí),MC就最短,因此MC=
          5
          2
          解答:解:
          (1)猜想d1=d2
          證明如下:
          設(shè)P(x1,y1)是拋物線上任一點(diǎn)
          ∴d1=y1=
          x12
          4
          +1
          而d2=PF=
          x12+(y1-2)2
          =
          4y1-4+(y1-2)2
          =y1
          ∴d1=d2

          (2)過(guò)M作MC垂直x軸,垂足為C,易得MC=
          1
          2
          (PP1+QQ1
          由(1)證PP1=PF,QQ1=QF
          ∴MC=
          1
          2
          (PP1+QQ1),
          即要求PF+QF最小值
          而PF+QF≥PQ,
          故當(dāng)P、F、Q三點(diǎn)共線時(shí),PF+QF最小,且等于PQ.
          所以MC最小值為
          5
          2
          ,
          即M到x軸最短距離為
          5
          2
          點(diǎn)評(píng):本題主要考查了二次函數(shù)的應(yīng)用、函數(shù)圖象交點(diǎn)、中位線定理等知識(shí)點(diǎn).
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,在平面直角坐標(biāo)系中,頂點(diǎn)為(4,-1)的拋物線交y軸于A點(diǎn),交x軸于B,C兩點(diǎn)(點(diǎn)B在點(diǎn)C的左側(cè)),已知A點(diǎn)坐標(biāo)為(0,3).
          (1)求此拋物線的解析式
          (2)過(guò)點(diǎn)B作線段AB的垂線交拋物線于點(diǎn)D,如果以點(diǎn)C為圓心的圓與直線BD相切,請(qǐng)判斷拋物線的對(duì)稱軸l與⊙C有怎樣的位置關(guān)系,并給出證明;
          (3)已知點(diǎn)P是拋物線上的一個(gè)動(dòng)點(diǎn),且位于A,C兩點(diǎn)之間,問(wèn):當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),△PAC的面積最大?并求出此時(shí)P點(diǎn)的坐標(biāo)和△PAC的最大面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          已知點(diǎn)P是拋物線y=
          14
          x2+1
          上的任意一點(diǎn),設(shè)點(diǎn)P到x軸的距離為d1,精英家教網(wǎng)點(diǎn)P與點(diǎn)F(0,2)的距離為d2
          (1)請(qǐng)寫出所給拋物線的頂點(diǎn)坐標(biāo);
          (2)猜想d1、d2的大小關(guān)系,并證明;
          (3)若直線PF交此拋物線于另一點(diǎn)Q,如圖,試判斷以PQ為直徑的圓與x軸的位置關(guān)系,并說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          已知,如圖A(-1,0),B(3,0),C(0,-3),拋物線y=ax2+bx+c經(jīng)過(guò)A、B、C三點(diǎn),點(diǎn)E為x軸上一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)B作直線CE的垂線,垂足為D,交y軸于N點(diǎn).
          (1)求這條拋物線的解析式;
          (2)設(shè)點(diǎn)E(t,0),△BEN的面積為S,請(qǐng)求出S與t的函數(shù)關(guān)系式;
          (3)已知點(diǎn)F是拋物線y=ax2+bx+c上的一動(dòng)點(diǎn),點(diǎn)G是坐標(biāo)平面上的一動(dòng)點(diǎn),在點(diǎn)E的移動(dòng)過(guò)程中,是否存在以點(diǎn)B、E、F、G四點(diǎn)為頂點(diǎn)的四邊形是正方形,若存在,請(qǐng)求出E點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (2012•老河口市模擬)如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c交y軸于A(0,4),交x軸于B、C兩點(diǎn)(點(diǎn)B在點(diǎn)C的左側(cè)).B、C兩點(diǎn)坐標(biāo)分別為(3,0),(8,0).
          (1)求此拋物線的解析式;
          (2)過(guò)點(diǎn)B作線段AB的垂線交拋物線于點(diǎn)D,如果以點(diǎn)C為圓心的圓與直線BD相切,請(qǐng)判斷拋物線的對(duì)稱軸l與⊙C有怎樣的位置關(guān)系,并給出證明;
          (3)已知點(diǎn)P是拋物線上的一個(gè)動(dòng)點(diǎn),點(diǎn)Q是對(duì)稱軸l上的一動(dòng)點(diǎn),是否存在以P、Q、B、C為頂點(diǎn)的四邊形為平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案