日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知如圖,△ABC中,AC=BC,BC與x軸平行,點(diǎn)A在x軸上,點(diǎn)C在y軸上,拋物線y=ax2-5ax+4經(jīng)過△ABC的三個(gè)頂點(diǎn),
          (1)求出該拋物線的解析式;
          (2)若直線y=kx+7將四邊形ACBD面積平分,求此直線的解析式;
          (3)若直線y=kx+b將四邊形ACBD的周長和面積同時(shí)分成相等的兩部分,請你確定y=kx+b中k的取值范圍.(直接寫出答案)

          【答案】分析:(1)根據(jù)已知拋物線,利用對稱軸公式代入數(shù)據(jù)即可得出對稱軸,同時(shí)也可以得出C點(diǎn)的坐標(biāo),利用AC=BC,即可得出A點(diǎn)的坐標(biāo)和B點(diǎn)的坐標(biāo),代入拋物線方程即可得出a的值,即得出該拋物線的解析式;
          (2)結(jié)合題意,可知直線一定經(jīng)過OB的中點(diǎn)P.又已知P點(diǎn)的坐標(biāo),代入直線方程,即可得出k的值,從而得出直線的方程;
          (3)同(2);
          解答:解:(1)由題意可知,拋物線的對稱軸為:,
          與y軸交點(diǎn)為c(0,4)
          ∴A(-3,0);B(5,4).(1分)
          把A(-3,0)代入y=ax2-5ax+4得:9a+15a+4=0(2分)
          解之得:
          ;(3分)

          (2)直線y=kx+7將四邊形ACBD面積平分,則直線一定經(jīng)過OB的中點(diǎn)P.
          根據(jù)題意可求P點(diǎn)坐標(biāo)為()(4分)
          把P()代入y=kx+7得:k=-2,
          ∴直線的解析式為:y=-2x+7;(5分)

          (3).(7分)
          點(diǎn)評:本題是二次函數(shù)的綜合題型,其中涉及到的知識點(diǎn)有拋物線的頂點(diǎn)公式和三角形的面積求法.在求有關(guān)動點(diǎn)問題時(shí)要注意分析題意分情況討論結(jié)果.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)已知如圖,△ABC中,∠ACB=90°,△BCD中,∠D=90°,CD=BD,又AC=6,tan∠ABC=
          12
          .求△BCD的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          7、已知如圖,△ABC中,D在BC上,且∠1=∠2,請你在空白處填一個(gè)適當(dāng)?shù)臈l件:當(dāng)
          ∠B=∠C(或∠ADB=∠ADC或 AD⊥BC或AB=AC)
          時(shí),則有△ABD≌△ACD.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知如圖,△ABC中,BD⊥AC于D,tanA=
          12
          ,BD=3,AC=10.求sinC.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知如圖在△ABC中,∠ACB=90°,CD⊥AB于D,∠A的平分線交CD于F,BC于E,過點(diǎn)E作EH⊥AB于H.求證:EC=CF=EH.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知如圖:△ABC中,AB=AC,BE=CD,BD=CF,則∠EDF=( 。

          查看答案和解析>>

          同步練習(xí)冊答案