日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 4.如圖,在Rt△ABC中,∠C=90°,BC=6,AC=12,點D在斜邊AB上,分別作DE⊥AC,DF⊥BC,垂足分別為點E,F(xiàn),得四邊形DECF,設(shè)DE=x,DF=y.
          (1)求y關(guān)于x的函數(shù)關(guān)系式,并求出x的取值范圍;
          (2)設(shè)四邊形DECF的面積為S,求S與x之間的函數(shù)關(guān)系式,并求出當(dāng)x為何值時,S有最大值?最大值是多少?

          分析 (1)根據(jù)余角的性質(zhì)即可推出∠A=∠BDF,繼而求證△ADE∽△DBF,結(jié)合對應(yīng)邊成比例和BF=6-x,AE=12-y,即可求出y=-2x+12(0<x<6);
          (2)根據(jù)(1)所推出的結(jié)論,結(jié)合矩形的面積公式通過等量代換,即可求出二次函數(shù)S=DE•DF=-2x2+12x,然后根據(jù)二次函數(shù)的最值公式即可求出S的最大值.

          解答 解:(1)∵∠C=90°,DE⊥AC,DF⊥BC,
          ∴∠A+∠B=90°,∠BDF+∠ADE=90°,
          ∴∠A=∠BDF,
          ∴△ADE∽△DBF,
          ∴$\frac{AE}{DF}$=$\frac{DE}{BF}$,
          ∵四邊形DECF是矩形,DF=y,DE=x,
          ∴CF=x,CE=y,
          ∴BF=BC-CF=6-x,
          ∵AE=12-y,
          ∴$\frac{12-y}{y}$=$\frac{x}{6-x}$,
          ∴y=-2x+12(0<x<6),

          (4)∵y=-2x+12,DE=x,DF=y,
          ∴S=DE•DF=xy=x(-2x+12)=-2x2+12x=-2(x2-6x+9)+18,
          即S=-2(x-3)2+18,
          ∴當(dāng)x=3時,S有最大值,最大值是18.

          點評 本題主要考查相似三角形的判定與性質(zhì),矩形的判定與性質(zhì),矩形的面積,二次函數(shù)的最值等知識點,角的三角函數(shù),關(guān)鍵在于求證△ADE∽△DBF,用關(guān)于x、y的式子表達(dá)出相關(guān)的線段,認(rèn)真地進(jìn)行計算.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          19.已知平面直角坐標(biāo)系中,點A(-3,3)、B(-2,-2).
          (1)請在如圖所示的網(wǎng)格平面內(nèi)作出平面直角坐標(biāo)系;
          (2)請直接寫出點C的坐標(biāo)為(1,0).
          (3)請畫出△ABC關(guān)于y軸對稱的△A1B1C1,并直接寫出A1、B1、C1的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          15.如圖,邊長都是1的正方形和正三角形,其一邊在同一水平線上,三角形沿該水平線左向右勻速穿過正方形.設(shè)穿過的時間為t,正方形與三角形重合部分的面積為S(空白部分),求出s與t之間的函數(shù)關(guān)系式,寫出自變量的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          12.把四塊長為a,寬為b的長方形木板圍成如圖所示的正方形,請解答下列問題:
          (1)按要求用含、的兩種方式表示空心部分的正方形的面積S(結(jié)果不要化簡保留原式):
          ①用大正方形面積減去四塊木板的面積表示:S=(a+b)2-4ab;
          ②直接用空心部分的正方形邊長的平方表示:S=(a-b)2
          (2)由①、②可得等式(a+b)2-4ab=(a-b)2;
          (3)試證明(2)中的等式成立.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          19.將6張小長方形紙片(如圖1所示)按圖2所示的方式不重疊的放在長方形ABCD內(nèi),未被覆蓋的部分恰好分割為兩個長方形,面積分別為S1和S2.已知小長方形紙片的長為a,寬為b,且a>b.當(dāng)AB長度不變而BC變長時,將6張小長方形紙片還按照同樣的方式放在新的長方形ABCD內(nèi),S1與S2的差總保持不變,求a,b滿足的關(guān)系式.
          (1)為解決上述問題,如圖3,小明設(shè)EF=x,則可以表示出S1=a(x+a),S2=4b(x+2b);
          (2)求a,b滿足的關(guān)系式,寫出推導(dǎo)過程.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          9.如圖,二次函數(shù)y=$\frac{5}{4}$x2(0≤x≤2)的圖象記為曲線C1,將C1繞坐標(biāo)原點O逆時針旋轉(zhuǎn)90°,得曲線C2
          (1)請畫出C2;
          (2)寫出旋轉(zhuǎn)后A(2,5)的對應(yīng)點A1的坐標(biāo)(-5,2);
          (3)直接寫出C1旋轉(zhuǎn)至C2過程中掃過的面積$\frac{29}{4}$π.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:選擇題

          16.使一次函數(shù)y=(m+2)x+m-2不經(jīng)過第二象限,且使關(guān)于x的不等式組$\left\{\begin{array}{l}{x>m-2}\\{-3x+2≥6m-1}\end{array}\right.$有解的所有整數(shù)m的和為(  )
          A.-1B.0C.1D.2

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          13.已知拋物線y1=x2+2x-3的頂點為A,與x軸交于點B、C(B在C的左邊),直線y2=kx+b過A、B兩點.
          (1)求直線AB的解析式;
          (2)當(dāng)y1<y2時,根據(jù)圖象直接寫出自變量x的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          14.如圖,點E,C在BF上,BE=CF,AB=DF,∠B=∠F.求證:∠A=∠D.

          查看答案和解析>>

          同步練習(xí)冊答案