日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在直角梯形ABCD中,ADBC,B=90°,且AD=12cm,AB=8cm,DC=10cm,若動(dòng)點(diǎn)PA點(diǎn)出發(fā),以每秒2cm的速度沿線段AD向點(diǎn)D運(yùn)動(dòng);動(dòng)點(diǎn)QC點(diǎn)出發(fā)以每秒3cm的速度沿CBB點(diǎn)運(yùn)動(dòng),當(dāng)P點(diǎn)到達(dá)D點(diǎn)時(shí),動(dòng)點(diǎn)P、Q同時(shí)停止運(yùn)動(dòng),設(shè)點(diǎn)P、Q同時(shí)出發(fā),并運(yùn)動(dòng)了t秒,回答下列問(wèn)題:

          1BC= cm;

          2)當(dāng)t為多少時(shí),四邊形PQCD成為平行四邊形?

          3)當(dāng)t為多少時(shí),四邊形PQCD為等腰梯形?

          4)是否存在t,使得DQC是等腰三角形?若存在,請(qǐng)求出t的值;若不存在,說(shuō)明理由.

          【答案】118;(2)當(dāng)t=秒時(shí)四邊形PQCD為平行四邊形;(3)當(dāng)t=時(shí),四邊形PQCD為等腰梯形;(4)存在t, t的值為秒或4秒或秒.

          【解析】試題分析:(1)作DE⊥BCE,則四邊形ABED為矩形.在直角△CDE中,已知DCDE的長(zhǎng),根據(jù)勾股定理可以計(jì)算EC的長(zhǎng)度,根據(jù)BC=BE+EC即可求出BC的長(zhǎng)度;

          2)由于PD∥QC,所以當(dāng)PD=QC時(shí),四邊形PQCD為平行四邊形,根據(jù)PD=QC列出關(guān)于t的方程,解方程即可;

          3)首先過(guò)DDE⊥BCE,可求得EC的長(zhǎng),又由當(dāng)PQ=CD時(shí),四邊形PQCD為等腰梯形,可求得當(dāng)QC-PD=QC-EF=QF+EC=2CE,即3t-12-2t=12時(shí),四邊形PQCD為等腰梯形,解此方程即可求得答案;

          4)因?yàn)槿呏,每(jī)蓷l邊都有相等的可能,所以應(yīng)考慮三種情況.結(jié)合路程=速度×時(shí)間求得其中的有關(guān)的邊,運(yùn)用等腰三角形的性質(zhì)和解直角三角形的知識(shí)求解.

          試題解析:根據(jù)題意得:PA=2t,CQ=3t,則PD=AD-PA=12-2t

          1)如圖,過(guò)D點(diǎn)作DE⊥BCE,則四邊形ABED為矩形,

          DE=AB=8cmAD=BE=12cm,

          在直角△CDE中,∵∠CED=90°DC=10cm,DE=8cm,

          EC==6cm

          ∴BC=BE+EC=18cm

          2∵AD∥BC,即PD∥CQ

          當(dāng)PD=CQ時(shí),四邊形PQCD為平行四邊形,

          12-2t=3t,

          解得t=秒,

          故當(dāng)t=秒時(shí)四邊形PQCD為平行四邊形;

          3)如圖,過(guò)D點(diǎn)作DE⊥BCE,則四邊形ABED為矩形,DE=AB=8cm,AD=BE=12cm

          當(dāng)PQ=CD時(shí),四邊形PQCD為等腰梯形.

          過(guò)點(diǎn)PPF⊥BC于點(diǎn)F,過(guò)點(diǎn)DDE⊥BC于點(diǎn)E,則四邊形PDEF是矩形,EF=PD=12-2tPF=DE

          Rt△PQFRt△CDE中,

          ,

          ∴Rt△PQF≌Rt△CDEHL),

          ∴QF=CE,

          ∴QC-PD=QC-EF=QF+EC=2CE,

          3t-12-2t=12,

          解得:t=,

          即當(dāng)t=時(shí),四邊形PQCD為等腰梯形;

          4△DQC是等腰三角形時(shí),分三種情況討論:

          當(dāng)QC=DC時(shí),即3t=10,

          t=;

          當(dāng)DQ=DC時(shí),

          ∴t=4;

          當(dāng)QD=QC時(shí),3t×

          t=

          故存在t,使得DQC是等腰三角形,此時(shí)t的值為秒或4秒或秒.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖數(shù)在線的A、B、C三點(diǎn)所表示的數(shù)分別為a、b、c.根據(jù)圖中各點(diǎn)位置,判斷下列各式何者正確( 。

          A. (a﹣1)(b﹣1)>0 B. (b﹣1)(c﹣1)>0 C. (a+1)(b+1)<0 D. (b+1)(c+1)<0

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,一張四邊形紙片ABCD,∠A50°,∠C150°.若將其按照?qǐng)D所示方式折疊后,恰好MD′∥AB,ND′∥BC,則∠D的度數(shù)為

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知在ABC,ACB=90°,CD,CE三等分ACB,CDAB.

          求證:(1)AB=2BC;

          (2)CE=AE=EB.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖所示,購(gòu)買(mǎi)一種蘋(píng)果,所付款金額y(元)與購(gòu)買(mǎi)量x(千克)之間的函數(shù)圖象由線段OA和射線AB組成,則一次購(gòu)買(mǎi)3千克這種蘋(píng)果比分三次每次購(gòu)買(mǎi)1千克這種蘋(píng)果可節(jié)。
          A.1元
          B.2元
          C.3元
          D.4元

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,以扇形OAB的頂點(diǎn)O為原點(diǎn),半徑OB所在的直線為x軸,建立平面直角坐標(biāo)系,點(diǎn)B的坐標(biāo)為(2,0),若拋物線y= x2+k與扇形OAB的邊界總有兩個(gè)公共點(diǎn),則實(shí)數(shù)k的取值范圍是

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知a+b=1,ab=-1.設(shè)

          (1)計(jì)算S2;

          (2)請(qǐng)閱讀下面計(jì)算S3的過(guò)程:

          =

          =

          =

          ∵a+b=1,ab=-1,

          _______.

          你讀懂了嗎?請(qǐng)你先填空完成(2)中S3的計(jì)算結(jié)果;再計(jì)算S4;

          (3)猜想并寫(xiě)出, 三者之間的數(shù)量關(guān)系(不要求證明,且n是不小于2的自然數(shù)),根據(jù)得出的數(shù)量關(guān)系計(jì)算S3.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在下列條件中,不能證明ABD≌△ACD的是(

          A. BDDC,ABAC B. BC,BDDC

          C. BCBADCAD D. ADBADC,BDDC

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】綜合題。

          (1)解方程組

          (2)x取那些整數(shù)值時(shí),不等式 都成立?

          查看答案和解析>>

          同步練習(xí)冊(cè)答案